Last Sunday we covered preliminary ground in which we became, presumptively, more familiar with the meaning of the word "finite", and we, perhaps, all had some experience of an enlargement of our previously existent ideas as to how big finite can be. As a matter of fact we did not deal with any conceptions that-were really difficult at all. The difficulty was in the domain of trying to expand the perceptual imagination, to grasp notions which conceptually are rather simple. One lesson that should have come out of that experience is this, that the perceptual power is very definitely restricted. In shall
what we shall do tonight we have to drop the perceptual power and operate with other cognitive powers. I shall outline three cognitive facets or powers.

First of all, "perception, which we shall understand as the cognitive aspect of sensuous experience. The impressions become we get from the world organized, more or less automatically, into what we call percepts, which are characterized by these and qualities, that they are concrete and particular, they are also definitely finite in their limitations. Last Sunday we sought to expand perceptual imagination so as to grasp some$10^{10} 100$ Ie to the 100 , a pretty big number. The second cognitive power we shall call "conception. It is a cognitive power why itistrue that is non-sensuous in its purity however much in common usage it may be more or less confusedly blended with perception. In its purity and in its most efficient operation it achieves the a high degree of freedom from restrictionsof the perceptual consciousness. It is characterized by generality, impersonality,

This ran be typed in by turning the typewritercylinder down part of as pace for each power?index Thus $\left(10^{i 0^{100}}\right)$

While
and definitiveness. / these features are present in variable degrees as among different concepts, in their highest development we get an extreme generality and an extreme definitiveness and it is on that level that mathematics exists. The third form of cognition is one that is practically without recognition in the vast bulk of western philosophy and psychology, but not totally without recognition. There are at least references among the German idealists that point to it. By introception I mean a cognitive power which transcends the subject-object relationship, but, like" "perception, its content, if we may use that term, is concrete, but, like unto conception, its content is completely universal, not particular. Its key word is Light. You might call it cognition as pure hight. In its purity it operates only in the domain of the Infinite. It can be Realized, and when Realized in its purity, the sensuous or perceptual world drops away \wedge vanishes, and likewise the conceptual world drops away and vanishes. There are possibilities of an interblending between these three cognitive intercomponents. In our work last Sunday we dealt with an/blending
wedealt with between perception and conception; in other words, a domain that is familiar, more or less, to everyone. Tonight, as shall far as may be, we will attempt to drop the perceptual component and its CoNcrete particularily
to journey on into the domains in which we propose to enter, and we'll see if we cannot in some measure effect a fusion of the introceptual with the conceptual.

I may say this about the vast majority of mathematicians: thet they operate on the level of the conceptual, freed from the perceptual, but without the light of the introceptual. When you have the fusion of the introceptual and the conceptual,
you have a different domain from that which is familiar to most mathematicians. You have spontaneous luminousness combined with the principle of organization. Now, we have before us a far more difficult task than that of trying to comprehend the googalplex. Let us consider the totality of all natural numbers; these consist of imply the positiv e integers, the one, two, three, four, and so on beyond all limits. One number and only one in that series is the googial, and another one is the googalplex. Consider this whole series as one entity, that means consider all possible integers whatsoever, and remember there is no such thing as a last ——Aand
integera embrace that totality as one entity. Now, you cannot embrace it in the sense of putting a circle around it. You could in principle put a circle; around the googalplex. The embracing has to be done in another way. Let us say, symbolize
by between the luardsanol it the arms held out this way with an open space, not making Huus a closed circle; the arms defining a zone in one sense; the open space indicating a limitlessness. But the task phoue ed before bear on the conceptual imagination now is to grasp that totality as just one entity. We'll have to go further than that. We are indebted to two German mathematicians of the last century for the definite defining and characterization of the infinite. These two are Dedekind and George Cantor. It is noteworthy in the work of Dedekind, in his essay on "The Nature and Meaning of Number", that you hardly ever see in that essay our ordinary numbers at all. It is an essay about sets and classes, about the primary ideas in the mind, and theorem after theorem developing from that simple material, derives the most fundamental properties of number. Some of these we spoke of last Sunday.

Number grows out of the establishing of a one-to-one lastsunday \boldsymbol{T} thisplocess
 stage of the infant ${ }_{\chi}$ the primitive; we saw how correlation probably first was made with the fingers of the hand and various objects, later with pebbles and various classes of objects like sheep, and so on. That was before notions of number as we have them were born. That/fundamental counting That is fundamental number. The basic notion upon which we build is that we can call two classes similar, or, in ordinary language, equal, when we can set up a one-to-one correlation between the two classes so that there are none left over in either class, Thus, if there were 5 coins and 5 pebbles, word five or the we could set up, even if we didn't know the/number five - that having Notyet notion $\ln ^{2}$ been born, we could draw a line between a pebble and a coin and a pebble and a coin and exhaust the two classes at the same moment. When that happens we say they have the being
same cardinality, the cardinal number, which the quantity number rather than the order number. $\wedge^{\text {Better get used to the }}$ word cardinality because we are dealing with notions that are iNte)-callatiom very fundamental. And just as an atrojent point, I may next Sunday or sometime later deal with some preliminary efforts along the line of what we might call a construction of an 盾oloistic mathematic - just some preliminary ideas. To achieve any understanding of even the initial idea, you have to grasp the conceptions with which we are dealing tonight. The reasons for that will later appear. But now we are going to note the property that is peculiar of our class of numbers. I put down $1,2,3,4,5$ a dotted line afterwards which means it goes on forever) And I'm going to put another line below, which will be the doubling of each of the first numbers.

$$
\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 \\
2 & 4 & 6 & 8 & 10
\end{array}-4-\left(\begin{array}{l}
\text { Note to typist: } \\
\text { Write with } \\
\text { several dashes } \\
\text { and No other } \\
\text { writiNg on the } \\
\text { lines. }
\end{array}\right.
$$

Seperate

Now here is a very important point. We can set up a one-to-
thus. one correlation between these two classes or sets -at this line hera - That's counting. If there are just as many in have one set as there are in the other, they som the same cardinality. Now init it 八 evident to you, that no matter how far we go in the first set we. will always have a number corresponding to each number in first set are the second set, Corresponding to iNHiel first set any number " n " over here, there will be a " 2 n " heme. There will always be a $2 n$ corresponding to the n; therefore there, are just as many numbers, just as many elements, in the second set as there are in the first set. But another important fact every element in the second set is to be found in the first set. Two is found over here, four over here, six over in there, and in trefinstset, so on, Yet there are elements in the first set that are not found in the second. One is not found in the second, three is in Hue seconal set. not, in fact, every odd number is not found. There are just as many in one set as the other; the totality of elements in the second set is the same as the totality of elements in the first set. They have the same cardinally. The second set is a subset of this, because all of it is found in that, but z not all $\circ f_{\lambda}$ that is found in this. Now that quality, that property, is the definition of an infinite class. An infinite class is a class which has one or more parts, proper parts, which have the same cardinality, that's the same number, totality, as the whole. A proper part-wieh has the same cardinality as that of the whole. That is never true of any finite collection, or finite class. You take a proper part of a googol, for instance, you take take 0 , a sub-set of 100, out of that googal \wedge the googal will is its cardinality be reduced by that 100 , You can't set up a one-to-one correlation.

It does not have a proper part, which has as many elements in it as the whole. Only infinite classes or sets have this property.

Now; there are some very wonderful things you can do with our integers. Would you believe that you could count with the integers all the rational fractions? Just consider the rational fractions between zero and one. It is obvious, isn't it, at once that there is an infinity of them in there? One over a googalplex would be one of the fractions in there, one-half, one-third, all the fractions with one in the numerator and any number in the denominator, and several with ${ }^{\text {a/ larger }}$ number than one in the numerator, and that between one and two all contiguous you find a similar infinity, and so on between everest integer S
 whatsoever the whole series. You would have an infinity of fractions between every one. Is that clear? Any one to whom it is not-oloen?

Now what we propose to do is to count the sumetotal of

all fractions in the number system that goes out to infinity. What do we have to do to do that?, We have to order them, in will counting a definitive way, such that, we $N 1$ be sure of picking up every fraction whatsoever. Think about it. How would you go about that? .How would you start a system that would enable you to know certainly that in that system you had all of your numbers - rational numbers, fractions and integers, so ordered that you and Knew That you lad hemal. had. them all. Now you couldnet start from zero and say you theN take the next fraction. It wouldn't be one-half, it wouldn't be one over a googal, it wouldn't be one over a googalplex.

Themes an infinity of them between a googalplex and zero. the xationallxuxbers
Now we want to try to order them iso that we can start counting. Not
You cant count until you can order. ITtsonappens that.

this is worked out in a very clever. and ather simple
De letse and substitute aHacheel pages 1,2,to PNtroduca way. Let us write. the numbers in this fasion.. . . . (affacizedpage You write every number as a fraction. Start in here, one over one. Now the numerator will always be ones on this line. The denominator will correspond to the number there - one ov er three, one over four, on to infinity. Down here we will have two over one, two over two, two over three, two over four, and we'll have three over one, three over two, three over three, three over four. Down here we have four over one, four over two, four over three, four over four, and so on. Well, you follow that system out - clear, to \therefore infinity in every direction - and you.will get every fraction that there is in an orderly arrangement, including every whole number. One over one reduces to/whole number, two over two reduces to one, three over one reduces to three. You will have every integer; positive integer, you will have every fraction whatsoever somewhere in that system, and they are nicely ordered. This will show right here. All of these continue on to infinity this way and that way. Suppose we start and instead of writing it that way we write it one and a comma and one; that stands for that fraction; it is just a different way of writing it. From here we go over here. We write $(1,2)$ and then we come down here on a diagnal and pick that up, we-get (2,1). Then we go back over here and we get $(1,3)$, we get $(2,2)$, and $(3,1)$ and so on, and then we can set up a one-to-one correlation. One - tied in here. This is the second one. This is the counting process. This series, you can write this very simply now, if you notice certain rules. The sum of the two keeps ascending. There'll be some with the same sum, that is, in here one and two are three and $t, w o$ and one are three. You write them in the order of the ascending numerators, hence you have perfect order. You see, this numerator is low, this
one is larger; then you take the ascending numerators here, the first number being the numerator in each case, the second number being the denominator in each fraction. Now you see there is, that you have given to it a definite order, and that now you can count it. And no mat ter how far you go out here, you always have a whole number, an integer that will correspond to your rational fraction; hence there are enough integers to count not only all the integers, but all the integers and all the rational fractions in addition: This is mathematics of the manifolds. arelassos infinite now ; not the mathematics of finite ques.
is domaindevelopediby It's a different ofmenoion, a mental process, fut it just so happens that this correlates and gives a rational pattern to, many reports from mystical experience --experiences that

$$
a s
$$

appear to the ordinary consciousness as quite irrational when ord inarily
they are formulated. When you use this kind of logic, they
fall into a compress This is what makes
This discussioniofthe infin tie important.
That's -where
the importance of this comorin- In fact you
" one on . say; thinking has to stop when getpover into at least some dimensiongof the Transcendent." We are dealing with an instramint that enables us to carry a kind of thinking over ivethat's where the import e of following this kind of reasoning
cor in. What we are using here in our one-to-one correlation is precisely what primitive man did when he counted with his fingers. And if you are justified in saying that if you get and a correspondence with these five fingers and certain objects,
then you-are justified in saying they have the game cardinality, Thenjalso, you are jiscitified in saying the totality opal rational Using the same profess, exactly the same process/, just as.
rigidly, we can say of this series here that it has tho same cardinality as that. The series or collection consisting of all whale numbers plus rational fractions can be counted by

You've got to forget all the rules that held in your ordinary grammar-school arithmetic. This is another domain. Now this infinite, an infinite like this that can be counted, is called a denumerable infinite. The idea is that if you could count for an infinite time you could count them all. Later we will have to consider the infinites that cannot be counted.
Now we f have f another \ddagger hing. This is a simple/one.
This As not severe yet. The next one we will attempt - I $M e r e l y ~ N o t e ~ t h e ~ f a c t ~ t h a t ~ a ~ f u r t h e r ~ p r o o f ~ w a s ~ m a d e . ~ t h a t . ~$
jut point out then will fut t point out the fact that a further proof was made. that. 0 that, not only the whole of rational numbers, but the whole of the algebraic numbers can be counted. Algebraic numbers include all rational numbers, plus .a large number of irrationals like the square root of two and imaginaries like the square root of minus one, or complex numbers like a into the square mot of minus one plus b. They are numbers, the technical definition of which, you probably would rt understand, wouldntt Not be expected to understand. But they are the numbers that can be the solution of algebraic equations of any degree having integral coefficients. The class of numbers is so large that plane of we ordinarily represent them by a two-dimensional plane. put our ordinary numbers, which we call commonly the real numbers, just a hame, and so on (demonstrating) - no f we have the minus numbers in the opposite direction, and he have on this vertical line the imaginary numbers. We have minus the square root of minus one, minus two times the square root of minus one, minus/three times the square root of minus one, and so on indefinitely in each case, and out here we would have points in space. This number would consist of three one, underneath like that, plus two into the square root of minus one - that is called a/complex number - and this space

This is done by the method illustrated in figure I:

Two lines are drawn at right-angles to each other, one horizontal, the other vertical, as in the rectilinear coordinate system. An arbitrary distance along each line is given the value of unity and the integers associated with multiples of this unit, positive integers to the right and negative integers to the left, on the horizontal line.: Fractions, such as $\frac{1}{2}$, and the ordinary irrationals, such as $\sqrt{2}$, are associated with their appropriate points between the integers. The imaginary numbers -- involving multiples of $\sqrt{-1}$.are similarly associated with points on the vertical. line, with fractional and irrational multipliers appearing in their appropriate positions. The numbers appearing on the horizontal line are known as "real" numbers, on the vertical line as"immaginary" numbers. Numbers which are formed as an algebraic sum of a real and an immaginary number are called "complex" numbers by points of the plane, as indicated in figure I.

Numbers of the foregoing type can, in general, be solutions of
of algebraic equations. It is clear that we have now added several infinite classes to the class of the positive rational numbers, ie., the negative rational number, the ordinary irrationals, the immaginaries and the complex numbers. Yet. Cantor proved, by a method which we shall not review here, that the sum-total of all these numbers, which can be solutions of algebraic equations, can be ordered in such a way that a oneto -one correlation can be set up between them and the sum-total: of positive integers. Hence the totality of all these numbers is denumerable.

But we come now to the next step: A proof, although there is at this point, some difference of opinion, that you ON C cannot count the total of all real numbers. Real numbers consist of those that are not imaginary like our integers, like our fraction $\sqrt[8]{\sqrt{r}}$ the cube peat of 7 , and so on all of these that I put on the hoad here can be solutiong-of algebraic equations with integral oopfieients, put the real numbers include numbers like the ratio of the diameter to the circumference of a circle, and 1 , the numbers written this way (demonstrating)
one of the simple ways - the limit when \underline{n} equals -infinity These
of one over one to the nth power. $\frac{T}{}$ Wo numbers of enormous importance, $\pi^{\|}$you can appreciate. $\wedge^{(1 s)}$ the base of our natural system of n logarithms, but, more important than that in one respect, $f t$ is found wherever you study the phenomena of life. Get the statistical data connected with anything that is living, draw your curves that correspond to your statistical data giving your life cycle, the ${ }_{\wedge}^{\text {curve, when }}$ reduced to a formula or to an expression always involves al
 number of life. Now \bar{F} and $P /$ are transcendental numbers. That means technically that they cannot be solutions of algebraic equations having integral coefficients. At the time of Cantor these were the only transcendental definitely known. They an dully herd number -to find. But his proof was
transermentals whey contrastedwithalgebraic yum bors
that they are so much more numerous that A other numbers they cannot be counted.
smallexample
Now here is a $1 i^{2} t+e-b i t$ of proof that employs
Fou into the domain of higher mathematics, the reasoning that
We ara presented witt
is sometimes used in higher mathematics. Facing the problem of ordering all the real numbers, k That doesalt mean merely the rational numbers, integers and fractions, which it is easy
to order, but now are going to try to order all the real we. include numbers. That means would have to is every irrational and every transcendental there is, It is an impossible order. x There is no way of doing it - at least that a human mind can envisage. Cantor suspected that the number of real ONE
numbers was so great that fou could not count them, even with an infinity of integers. Now let us consider the region from one
zero to one. If we could prove that could not count all
(
it would be in possible numbers between zero and one then obviously real
\wedge and count all the K numbers from zero to infinity so all we have to consider, if. we are going to prove they cants be counted, is the region from zero to one. Let us take every NuMber ard it fraction λ-the woulall be fractions π^{1} write them as nonwhite terminating decimal. Thus, for instance; some are naturally we non-terminating, most of them would be, and if had a suchas is then we Verite it decimal which is complete, in the non-terminating form
 on to infinity and when you get to infinity this number is these just as bis as the .4. So you can write every one of the e terminating decimals or fractions in a non-terminating form.

We are going to write all the numbers between zero but since Not. and one in a non-terminating form; we cant t find an order, so we assume $\lambda^{\text {an }}$ order exists. We write our first number let us use letters to represent the digits in our fractions we have a-sub-one, a-sub-two, a-sub-three, and so on to infinity substitute inclosed page.
-11-

Then we compose a Table in which we represent the infinity of non-terminating decimals by employing letters with subscripts to stand for the digits in each decimal, ass is given in Table III.

Table III
We set up this Table as indicated and establish a one-to-one correlation between the positive integers and the series of nonterminating decimals. If our Table embraces all of the real numbers between zero and unity then we would have proven that they are denumerable. But examination reveals that no matter how completely we develop the set there always remains an infinity of numbers which have not been included. This is evident from the following consideration: If we write a non-terminating decimal which differs from the first decimal by having a different digit or one other than a_{1}, in the first place, and other than b_{2} in the second place, and other than c_{3} in the third place, and so on, then this number will differ from every number in the Table in at least one place. This process can be repeated by diagonals beginning with a_{2}, z_{3}, a_{4} and so on, so that obviously there would be an infinity of numbers not included in the Table, however complete we attempt to make $1 t$.

logical is here
 that the totality of all real numbers is countable or it is we we that not countable. If you find that when wo ur assume it is countxe able run into a contradiction, then the conclusion must艮o that it is non-countable. That's the dichotomy. Trestioning $\wedge^{\text {whether this reasoning is sound or not depends upon whether }}$ the dichotomy is valid. Thus, for instance, if were to say that an equation, is either reducible or not reducible, wet would have two possibilities classes. It belongs one or the other. Doss Is Thisprikiciple valid! that hold? Is there some middle ground which belongs to the zone of that which is not reducible and not not-reducible? Some criticism of the reasoning here has been brought from that angle, but if we accept the soundness of the reduction ad absurdum then it follows that the sum total of all real numbers is more than a denumerable infinite. Now here is the interesting fact. In Cantor's time two transfinite numbers were known. Since then several classes of an infinite number of transfinite numbers have been discovered. They are impmeasurably infinitely more numerous than all the other numbers put together, and yet they are hard to discover, and only two of them are well known to everybody, namely 11 and E .

Let us suppose we took all other numbers than the transcendental of all the algebraic numbers, integers, rational fractions the ordinary irrationals, the imaginaries and complex numbers, and we placed them out in space as I
in Fig I Then
showed before we find this true, that between any two of those numbers that would correspond to specific points like the points I have listed here which we will are E into square root of minus one plus B and C -into the square root of minus
oneplus - between any wopoints you can always find another number. Do you see that from that statement it follows that rue
Fou can always find an infinity of other numbers? Here is a check of our logical sense. If between A and B, or I and 2, we \mathbb{X} can find another number, if all this is true that between We any two numbers \mathbb{N} can find another number, then it must follow We
that between those two numbers \& can find an inf inity of other nymbers. Of course, quite obviously, between youp gand your f another number, Wut we call that \mathbb{C}, but our rule wonld say S * f o we caN that between \& and B yeu woud find another number, and so on ad infinitum. That is another feature of mathematical thinking that is very fundamental. It's part of the step from any-ness to every-ness.

Vie
If fott can say something about any member of a class, or set, or group, or collection; (by"any"we mean one picked at random), whatever we can say of 'any' we can say of évery: You see we are picking out 'any' on the basis of its general' property,

aNd arenot about'particularities that may attach to special entities. Now it would seem, would it not, to you that after we got down all of the algebraic numbers, all of these numbers we have been talking about except transcendentalc that that plane would be pretty solidy filled, wourdntit? Rememberif that wet can always get an infinity of numbers between any two points. Yet plaive as a matter of fact that, would be like a sky with the numbers corresponding to points like stars with vast blank spaces in O4, dexsely oug between. plane is not tightiv filled. Remember your points have no area at all. They're absolutely sharp, area-less. They haventit packed that plane, but actually that plane has infinitely greater spaces in it than the space that would correspond to the numbers. In other words, without the transcendentals we Not you dont have a true continuum.

The only way you can fill that space is by bringing all of the transcendentals into I think you c an begin to see the enormous vastness that belongs to the transcendental numbers as compared to all of the other numbers. So, one simple notion of infinity is not enough to take care of our total problem of determining the cardinality of all possible classes. This leads us to what you might call a heirarchy of infinities.

Whictu
The first infinity corresponds to the total of all integers, which was sufficient to count integers and fractions and in addition sufficient to count all algebraic numbers, has
 times $\frac{a s}{\text { (omega) sub-zero }}$
of the Hebrew alphabet and thother is last letter of the Greek.) And this is known as the denumerable infinite, corresponding to the cardinality of all integers. The cardinality of all real numbers is more than infinitely greater than that. We have a very interesting multiplication table or certain laws that attach to these numberg. We take aleph, add one to it, 100) and the answer is just aleph sub-soro. $\wedge^{\text {Add a googalplex to it, }}$ and it swallows th just as easily. The answer is anoph subureno. Juist swallows it as easily as it doas the one. Or againg, if we subtract ágoogalplex from it, we have ajeptarabexa minus a googalplex, which is ten to the ten to the foo and that just equals aloph-sub-zere. You can't disturb its calm in that way. You see, a whole universe like this could drop out and 代 would go on just as placidly as you pleqse. Nothing happenedi. Or,
 We Y multiply $4 t$ by a googalplex, 10 to the 10 to the 100 timesn-I-ean't justif the foments, youll justhavo to take them.

"Ftrimp that'spough anyhow- what happenod-h swallowed It up just ${ }^{2}$ hasnlt changed it at all. The multiplication table is very easily learned when it's like that!
We caus go stillfurthe?
Another thing, you take and multiply' Xt by itself; that'k'is equal to qi\&ph squared It just equals aleph subzero. We
haven't disturbed it yet. It takes something more powerful to disturb it than that. Th s means Λ none of these processes have taken us out of the domain of the denumerable infinite. we produce This is what you have to do to any effect on the number we ja is e fit to the to power ()to to Fou take aleph now raised to the aleph null power and at last We that does something, foe get, aleph dub-one J the second transmay ask,
finite number. Now, you say does this correspond to anything? It corresponds to, the cardinality of the totality of all real numbers including the transcendentals, and the cardinality of the continuum y that is, the mass of numbers it would take to make all of this space solid. Tape the same effect of multiplicalion and addition applies to aleph lub-one. As a matter of fact. VervaiNs uneluahod aleph surb-one raised to the aleph null power just swallows -thatup and it remains aleph sub-one. Its unafectit. The operatlory H_{1} only thing that affects, it is raising it to the aleph sub-ana. $t_{\text {i }}$ power in which case it achieves a higher cardinality and becomes

No P aloph-sub-two. $)-\left(2,1\right.$) li_{2} class of entities with which we actually deal. The statement is that it, corresponds to the number of single valued functions, but you wont understand that and those so far as I moo are the only ones that have usage. ${ }^{\text {Pat us assume the process }}$ carried to the limit, and we get this /-the symbol of the whole The foloistic.A the most comprehensive conception evolved in the mind of man And since the mind of man is a part of the Whole it could not evolve something greater than the Whole, hen ce ${ }^{*}$ the most adequate symbol of the vastitude of the

$$
042
$$

Your googalplex by now is a microscopic pellet. In the sea of the Illimitable, the whole galactic universe, nay, a denumerable infinity of galactic universes of the same size, would dissolve into \# sub-microscopic insignificance. It really makes no difference whether you call the universe Tula did an kllusion, as Shankara, and as the Buddhists do, or whether you call it Real, as Sri Aurobindo does. In any case, in the presence of the multiple infinitude of the Whole, they it
 real or illusion is not a point of vital importance.

When a mathematician speaks of the infinite, he does not mean merely a big number. He means things like this series of which we have spoken. But he means in differentiating between infinities of different orders that they still have a character, that it is not a blank of largeness in which there is no element of determinateness at all, but ratter that they have a character so that there is something distinguishable a heirarchy of infinities. Now the question would arise, how could a finite creature ever know, ever realize, the Infinite. And the answer is, a finite creature never could, for the finite creature would be limited to a progression of finite steps, and in a finite time could never realize the Infinite. But if the reality of man, nay the reality of all creatures, of all entities, is that they are part and parcel of the Infinite, not merely cut off apparent finite fractions, but co-extensive with the Infinite, then the Infinite is knowable in the sense of Realization by the simple removal of an obscuration the soming of finitude being-piaced by seme-instrument of obscuration. I considered it very significant when Dedekind gave his existence-theorem concerning the reality or existence of infinite manifolds,
he

ONE

Fie said, take the ideas in the human mind. Fou can have an idea which we call amub=one and then Weat can have an idea a_{2} of that idea, which we'll call and then the ampime can be put in the first series as an object of thought and our a Foter would be the idea of this idea, and that can in The firstseries be be placed up there and the process continuedin that manner. Every idea in the second series would be in the first, but there would be one idea in the first series that is not in the second. Particularly he gives the idea of our own ego as one not included in the second. You haverdinality, Both sexies have
equal cardinatity, the same cardinality because of the l-to-l relationship; therefore, the ideas in the human mind are infinite. Now that doesmt mean that they are infinite in the sense of actual concrete thinking of an infinity of ideas. ing You might say it is infinite by this power of a genera $y /$ progression. But the very power to generate the progression and to see it points to its infinitude. I know these ideas have some subtleties in them. They are not too easily grasped. I am quite sure that the lecture of last Sunday probably seems rather simple now, and the googalplex is something you may take in your stride relative to this

I have been thinking during the last few days of a possibility of formulating the first principle of what we might call a holoistic mathematic, and I might by next Sunday be prepared to give a first talk on this, but IHz have to assume that you are familiar with the kind of thinking we've been doing tonight. It will prove necessary if we are going to use the basic holoistic conception, to use the mathematics

Hat useharedone tonight. This sew of the trans-finite. This is preparatory in one sense, to that., Ourotiver purpose wầ to securse acthe other-pant of its meaning wa to five some mare adequate
understanding of what is meant when we speak of the Whole. This is No simple denumerable infinite but a vast non-denumerable Infinity, compounded, an infinity of times. Naturally, we sink as relative beings into a less than microscopic significance compared to That, but he who knows that this vast Hhioness,
. he which is none other than Parabrahm, is That with which in truth $^{\text {when }}$ Nam identical, need not identify himself with an insignificant finite appearance but may know, as Shankara said, that he is not only a part of Parabrahm but that he is identical with the Whole of Parabrahm.

Now let us add to that, Sri Aurobindo's insistence upoN individuality. By the use of the conceptions we employed tonight it is quite readily possible to reconcile those two statements of Identity of Parabrahash the whole of the Holoistic,
retain and yet, infinite variety of infinite individuality. That, I think, is enough for tonight.

