If major premise aff. minor premise must be universal.
If major premise particular, minor premise must be particular.
If either premise neg. major premise must be universal.
If minor premise aff. conclusion must be particular.
\[p \rightarrow q \rightarrow r \rightarrow s \]
It is valid in EI, IA, OA

$\frac{M}{S}$

$\frac{S - P}{AII, EIO, IAIOAO, AAI, EAO}$

Conclusion must be particular

Minor premise must be affirmation

$P = N$

$\frac{M}{S}$

$\frac{S - P}{AAI, AEE}$

$\frac{M - S}{S - P}$

\[
\begin{align*}
\text{Fig I} & \quad AAA, EAE, AII, EIO \\
\text{Fig II} & \quad EAE, AEE, EIO, AAO \\
\text{Fig III} & \quad AII, EIO, IAIOAO, AAE, EAO \\
\text{Fig IV} & \quad AAI, AEE, EAO, EIO, IAI
\end{align*}
\]
Major premise universal
Minor premise affirmative

Major premise universal
One premise negative

Major premise aff.

Conclusion particular

\[\frac{M}{S} \quad \frac{-P}{S} \]

\[\frac{S}{M} \quad \frac{-N}{S} \]

\[\frac{P}{S} \quad \frac{-N}{S} \]

\[\frac{M}{S} \quad \frac{-P}{S} \]

1. Either premise aff. major premise
 must be universal
2. Major premise aff., minor premise
 must be universal
The Syllogism

1. The starting point is a proposition which all parties agree to be true.
2. Reasoning deals with the necessary consequences of premises already accepted.
3. Under certain conditions, two or more premises lead to conclusions.
 a. There must be a middle term common to both premises.
 (1) Hence, conclusion derived through process of mediation.
 (2) The real opposite of distribution is mediation.
4. The other or extreme terms known as major and minor terms.
 a. Major term: the one occurring as predicate in conclusion. Occurs in major premise.
5. Rules of Syllogism.
 a. There should be three and only three terms in syllogism which are used throughout some sense.
 b. Every syllogism contains three and only three propositions.
 c. The middle term must be distributed in at least one of the premises.
 d. No term must be distributed in the conclusion which is not distributed in one of the premises.
 e. From negative premises, nothing can be inferred.
 f. If one premise is negative, the conclusion must be negative and conversely.
 g. No conclusion can be drawn from two particular premises.
If one of the premises be particular, the conclusion must be particular.

6. The庶it process where ten is distributed in conclusion while it is not distributed in premises.

7. The four figures,

1. \(M \to P \) \(S \to N \) \(\therefore S \to P \)
2. \(P \to N \) \(S \to M \) \(\therefore S \to P \)
3. \(M \to P \) \(M \to S \) \(\therefore S \to P \)
4. \(P \to M \) \(M \to S \) \(\therefore S \to P \)
<table>
<thead>
<tr>
<th>Fig. I</th>
<th>Fig. II</th>
<th>Fig. III</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-P</td>
<td>S-M</td>
<td>M-P</td>
</tr>
<tr>
<td>S-P</td>
<td>S-P</td>
<td>S-P</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fig. IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-M</td>
</tr>
<tr>
<td>M-S</td>
</tr>
<tr>
<td>S-P</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>All S in M</th>
<th>No S in M</th>
</tr>
</thead>
<tbody>
<tr>
<td>All M in P</td>
<td>No M in P</td>
</tr>
<tr>
<td>Some S in M</td>
<td>Some M in P</td>
</tr>
<tr>
<td>All S in M</td>
<td>No S in M</td>
</tr>
<tr>
<td>No S in M</td>
<td>Some S in M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>All M in P</th>
<th>No M in P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some S in M</td>
<td>Some M in P</td>
</tr>
<tr>
<td>All S in M</td>
<td>No S in M</td>
</tr>
<tr>
<td>No S in M</td>
<td>Some S in M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Some M in P</th>
<th>Some S in M</th>
</tr>
</thead>
<tbody>
<tr>
<td>All S in M</td>
<td>No S in M</td>
</tr>
<tr>
<td>No S in M</td>
<td>Some S in M</td>
</tr>
</tbody>
</table>