Infinity and Expanding Relativity

Introductory Essay

Saying ascribed to Buddha:

"How can there by any understanding or teaching of that which is
wordless (i.e., inexpressible)? That can be understood and

taught only by Samaropa - an ascribed mark."

The Conception of Buddhist Nirvana by Th. Stcherbatsky with com-

prehensive Analysis and Introduction by Jaideva Singh, p. 51 (Gordon
Press, N. Y. 1973)
”Sﬁﬂyata * was declared by the Buddha for dispensing with all
views or ‘'isms'. Those who convert §UHyata itself into another

"ism' are veinly beyond hope or help"

(Nagarjuna: Madhyamaka Karikas 13,8) translation in Stcherbatsky,

ibid p 42, p. 82)

Buddha to Kasyapa:

"If a drug administered to a patient were to remove all his disorders
but were to foul the stomach itself by remaining in it, would you
call the patient cured? Even so édnyata * is an antidote against
dogmatic views, but if a man were to cling to it for ever as a view

in itself, he is doomed".

ibid p 43, and main text p. 82.

*  Sunyata = Expanding Relativity (our translation):

"Expanding"” because of its etymological derivation from the root "svi"
meaning "to swell, to expand"; the same meaning holds for the root

'brh’ or ‘brnh' from which Brahman is derived! "Relativity" because

it is "the theory that nothing short of the whole is real (read: the
same for all observers), the parts being always dependent are ultimately
unreal”. The Conception of Buddhist Nirvana, p. 36 and index p. 52)




Elsewhere, saying ascribed to Buddha:

“éﬁnyaté is to be treated like a ladder for mounting up to the
* ok

roof of prajna . Once the roof is reached the ladder should

be discarded.”

ibid p. 43

**  Prajna = Transcendental Wisdom



Infinity and Expanding Relativity

"...pure mathematics, in which the discerning student will find veiled the
Wisdom Religion, may serve as a means to the Realization."

from the early book "YOGA, Its Problems Its Philosophy Its Technique" by
Franklin Merrell-Wolff under the pseudonym Yogagnani (Skelton Publishing Co.,
Los Angeles, 1930).

Great clarity, great precision, great honesty - such are the characteristics

of the individual man Franklin @?ﬁfe})'ﬁ91fan Since 1936 there is added a
transcendental component.{iﬁﬁg autﬁor‘gf’this“gbggégz one of our precious fellow
beings in whom has occurred a transfinite widening of consciousness. "Recog-
nition" was his name for it in his first major book1) which was a personal rec-
ord of transformation in consciousness. He would now describe this as the
opening up of the faculty of “Introception”img%ge evidence is overwhelming that
these transformations actually occur in individuals. Further - as with the
experiences which transformed Gautama to Buddha, or Jesus to Christ - they may
affect human history to an extraordinary degree. Both the yearning for and
realization of transcendental states of consciousness seem then to be individual
and social facts, though it appears up to the present that the number who yearn
far exceeds the number who realize. The question then arises for the "usual"
human consciousness: how to live with this radical challenge - whether to deny
or accept the reality of transformation of consciousness, and whether the denial

or acceptance be unconditional or conditional. In view of the diversity of struc-

tures in which humans are immersed - religious, political, social, economic,

1) Pathways Through to Space by Franklin Merrell-Wolff (Richard R. Smith,
Publisher, New York 1944; reprinting by Julian Press - now Crown -
New York 1973; paperback reprinting by Warner).




academic and others - one can hardly speak of a single "usual" human con-
sciousness. Nevertheless if one Timits consideration to the generally recog-
nized major psychological faculties - perception and conception - the issue
becomes more clearcut. How are the usual perceptions and conceptions, even
highly evolved and refined, to accommodate what is purported to be a third

organ of cognition - "introception”, in the apt nomenclature of Franklin
Merrell-Wolff? Cektain1y the highly symbiotic perceptive and conceptive facul-
ties do not easily give affirmation to this mysterious third faculty which is
strictly neither perceived nor conceived. Here we must steer a middle course
between wielding Occam's razor and arrant reductionism on the one hand and
extending naive credulity on the other. Or, in simpler language, we must main-
tain some balance between a sweeping "not proved - nothing but" attitude and

an "everything claimed is true" attitude. Though we eschew the latter naive
credulity we must honestly own that we personally do take the position of "reso-
Tute credulity”.

It will help remove some critical doubts if we recognize that our perceptions
and conceptions constitute the contents of consciousness whereas the presumptive
third - introceptive - faculty might relate to the context or "screen" of con-
sciousness on which the contents are projected. It is thus possible in principle
that, with the perceptual and conceptual contents reduced to a low noise level,
a sensitized awareness of the context or screen could manifest - introception.
This would be non-interfering or orthogonal to the contents. In the limit of
zero noise, introception would be associated with "pure" consciousness - "Con-
sciousness Without an Object"”, the title and subject of the author's bookz) im-

mediately preceding this one.(‘?he present volume is a continuation which may

2) The Philosophy of Consciousness Without an Object (The Julian Press, Inc. -
now Crown - New York 1973)




be read iﬂdependentiy.) However much such remarks are evocative of the possi-
bility of this fresh and wonderful cognitive faculty which opens the door on
the previously unknown, they do not necessarily compel conviction of its ex-
istence. They do not strictly remove the conceptual or intellectual obstacles
even to conditional acceptance. Only direct experience would give certainty.
Such experience would establish the conditional existence of introceptive pure

consciousness; we would say further that it exists unconditionally if it could

be shown that it is potentially within the range of all consciousness - human,

and in whatever other form it may occur within the cosmos. Notwithstanding

these reservations, clear powerful and precise analysis, speaking the language

of conception itself,can lower and even remove the conceptual obstacles. This
might be done individually in the realms of various major categories of thought -
philosophical, mathematical and in the domain of the natural sciences. With

the obstacles removed by effective analysis and parallels, these conceptual domains
become allies in opening the door.

The present book, along with the larger work of which it is a part, is in my
opinion a major landmark in the history of philosophy. In it the author accom-
plishes the indicated task of removing the obstacles to introception in the

realm of philosophic thought. His qualifications for this task are impeccable.

As a young man, having completed his studies and already teaching philosophy at
Harvard he renounced the prospective academic career when he grew convinced that
this renunciation would facilitate his movement towards realization. This con-
viction was vindicated on August 7, 1936 when there began the profound series

of transformations of consciousness described in his subsequent writings1)2)°
In the ensuing years he has subjected these experiences to a thorough philo-
sophical ana?ysisfﬁéThége remain as possible allies in the effort to open the

door to introception the domains of pure mathematics and of the natural sciences.



0f the two, the former stands on its own foundation as an apex of human reason-
ing and also appears as the conceptual language of the sciences - certainly in
the physical sciences and increasingly in the biological and social sciences.
Hence the motivation for this essay in which we wish to give convincing ana-
Togues, metaphors, or paradigms, in modern mathematics, for introception.

Dr. Franklin Merrell-Wolff (again by academic education, as well as a great
natural gift for precision) is highly sympathetic to pure mathematics, and
confirms @gg;*supportive role for introception. He indicates this in several

places. In chapter IV on the New Realism he writes:

"(¢) The third view, which is here called the "gnostic", maintains
that mathematical, and therefore logical, knowledge is essentially

a priori, by which is meant that it exists independent of experience.
However true it may be that this knowledge does not arise in the rela-
tive consciousness, in point of time, before experience, yet it is not
derived from experience, however much it may employ a language which
is derived from experience. It is thus in its essential nature akin
to mystical cognition - and hence gnostic in character - rather than

similar to empiric knowledge."
In Chapter VII on Idealism he writes:

"But when mathematics is rqé@ied to introception it carries a religious
force which is a kind of applied mathematics, but in quite a different
sense. In the latter case, Truth is not an incidental notion employed
by mathematics, but so largely becomes its soul that the word must be

spelled with a capital T."

In the Epilogue cf this volume we read:




oS

"There is frequent reference in the book to mathematical analogues.
There is a reason for that. The underlying thesis is that the
factuality of pure mathematics might be as much in doubt,éf“the
factuality of pure metaphysics. But as the factuality of pure
mathematics is abundantly proven, there is the presumption that

equally well the factuality of pure metaphysics may be proven."

Finally, his view is most fully expressed in the original experiential record

2

under the dateline of October 4, 1936 :

“Once one recognizes the fact that the relative world, or primary
universe, is a valid part within the Whole and is relatively real,
then the problem of cross-translation from the level of Cosmic Con-
sciousness to that of subject-object consciousness is realized as
being of high importance. The possibilities of cross-translation
are adﬁittediy limited. The immediate content of the Higher Con-
sciousness cannot be cross-translated, but certain formal properties
can be through the use of systematic symbols. In some respects it
is like the old problem of the evaluation of irrationals in terms

of rational numbers. The ultimate content of the irrationals cannot
be given in the form of the rationals, yet, in the radical signs, we
have symbols representing the essential unity binding the two sets
of numbers. Just so soon as the mathematicians abandoned the effort
completely to reduce the irrationals to rational form, and accepted
the radical sign as an irreducible symbol of profound meaning, then
they did succeed in integrating in their consciousness two quite

differently formed domains of reality. This integration meant that

3) Pathways Through to Space (p. 208)
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The two domains were found to be logically harmonious, although that
which we might call the 'affective' content was discrete. Cross-
translation, in something of this sense, is possible with respect to
Cosmic and subject-object consciousness., In fact, if the conscious-
ness-equivalents of the entities and operations of pure mathematics
were realized, we would find that, in that great science and art,
cross-translation in a lofty sense already exists. The Root Source
of pure mathematics is the Higher or Transcendent Consciousness, and
this is thekreason universal conclusions can be drawn with unequivocal
validity in pure mathematics. The greater bulk of mathematicians fall
short of being Sages or Men of Recognition because their knowledge is
not balanced by genuine metaphysical insight. But they do have one-
half of the Royal Science. Up to the present, at any rate, the Foun-
tainhead of the other half is to be found mainly in the Orient. The
union of these two represents the synthesis of the East and the West,
in the highest sense, and is the prerequisite of the development of a

culture which will transcend anything the world has known so far."

It is in amplification of the foregoing masterly statement that the present
essay is contributed by the editor.

We in modern science do not claim to have more than embryonic ideas about
consciousness. In contrast, the traditional East, particularly in its ancient
Vedic scriptures, together with the derivative six systems of Indian philosophy,
and their formidable Buddhist opponent - the Mahyad#maka, does claim to have a
well-developed understanding of consciousness. In the West, by practising "out-
sight" energetically for 500 years, we have been able to reach a powerful under-

standing of the outer physical, (and, to some extent, biological) universe. It



stands to reason and intuition that the wise men and women of the East by
practising insight for thousands of years would have come to a deep under-
standing of the inner universe of consciousness. Nevertheless, the success
resulting from the insistence on a refined analytical and formalizable de-
scription of perceptual experiences of the outer world (which is standard

in modern science) leads us to expect that these same analytical or mathema-
tical methods may illuminate the subject of consciousness. Particularly rele-
vant to our present inquiry is the analysis of "infinity" - a central recurring
theme in the reports of Yogic xfanscendenta? experiences as well as the visions
of cosmogony in the ancient scriptures. In this essay we discuss infinity as

considered in modern mathematics where it has undergone some fascinating develop-

£
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ments.? The Concept of Infinity in Modern @gﬁbgmgﬁjgé,ﬁs)a statement in the

Upanishads5 which speaks of the two infinities - 1)m§he universal Supreme Brah-
man or Self and 2) Creation of the visible universe: when the second emerges
from or merges into the first, the first remains the same infinity. This is

a remarkable anticipation of the concept of infinity as it is understood today.
An infinite set, which we discuss below in more technical terms, has just that
characteristic property which no finite set has - that the part can be equiva-
lent to the whole. This means also that, unlike the finite set, no matter how
many facsimiles of its parts are added to the whole, the infinite number of ele-
ments in the whole is not changed. This is quite opposed to what happens with a

finite set.

Let us take an example to engage the imagination. Suppose we have an infinite

5. From the Brihad-Aranyaka Upanishad, Fifth Adhyaya, First Brahmana (also in
the Prologue to the Isa-Upanishad, as quoted from the White Yajur Veda, 40th
and last chapter): N
OM Infinite is that [the supreme Brahman) infinite is this (the conditional
Brahman, or the visible universe). From the Infinite (Brahman) proceeds the
infinite. (After the realization of the Great Identity or after the cosmic
dissolution]) when the infinity of the infinite (universe) merges (in the
Infinite Brahman), there remains the Infinite (Brahman) alone.
Translation of Swami Nikhilananda The Upanishads, (Bell Publishing Co., New
York, 1962)



hotel, with a prinéip]e of privacy so that there is only one guest to each

room; suppose also that there is one room to each guest so that every room

is filled «nd fi e are no quests left out. Then a new guest arrives. Now

ié this were a finite hotel the management would have to say, ‘Sorry, try the
hétel across the way', but if it is an infinite hotel there is no problem:
Install the new guest in Room No. 1, move 'old' guest No. 1 to Room No. 2;

move 'old' guest No. 2 to Room No. 3, and so on. No guest is left unroomed

and no room is left unoccupied. Now not only can the hotel accommodate one more
guest but it can accommodate a million more or infinitely many more. And in
fact, if we have infinitely many hotles, each of them infinitely large and all
of them occupied, and we decide to dismantle all but one of these hotels, we can
put infinitely many infinite hotel populations all into one hotel.

This will be proved later. It is a characteristic property of an infinite
set that a part can be equivalent to the whole; and from this follow all the
consequences fﬁr infinite hotels. As we have said, this property was anticipated
in the beautiful saying in the Upanishads in which, in some translations, the
word 'fullness' is used to designate what we call "infinity'.

A Tittle preliminary history of the concept of infinity in the West may be
useful. First, most of the ancient Greek thinkers, very clear-headed within cer-
tain limitations, abﬁbrred the idea of infinity. With a few exceptions like
Archimedes, who partly anticipated the calculus, they abandoned the use of in-
finity after trying it briefly. There were the famous paradoxes due to Zeno.

The most interesting of these paradoxes is about Achilles and the tortoise. Sup-
pose Achilles runs 10 times as fast as the tortoise. Zeno argues, "If you give
the tortoise a head start of 10 feet, by the time Achilles covers the 10 feet the
tortoise has gone one foot. But then while Achilles covers the remaining foot

the tortoise goes another one-tenth of a foot, and so on". Thus, Zeno says,
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*Achilles never catches up with the tortoise because, each time he covers the
distance between him and where the tortoise was, the tortoise has gone another
one tenth of the distance’.

A paradox is an argument which appears to lead to a contradiction, which is
indeed only an apparent contradiction, because it is based on an implicit un-
warranted assumption; when this assumption is removed the trouble disappears. The
trouble with Zeno's argument became clear with the invention of the calculus and
development of the concept of limit. The unwarranted assumption implicit in Zeno's
paradox is that the sum of an indefinitely large number of indefinitely small
parts is necessarily infinite and cannot in some cases be a finite number. But
of course, it can be: add up an indefinitely large number of indefinitely small
parts, each one tenth the preceding in magnitude so that they ultimately become
indefinitely small, and you get a finite quantity. It is the limit of a sum
(a 'series'), where the number of terms goes to infinity. In our case, the series

"converges": The 1imit is a finite quantity. Achilles overtakes the tortoise
when he has covered 11 and one-ninth feet.

The coming of the calculus thus changed the picture. Then people became
over confident, and they began talking about 'infinitesimals', infinitely small
quantities. They also spoke of infinitely large quantities, which would naturally
be reciprocals of infinitesimals. But by the beginning of the nineteenth century
there was real trouble. Mathematicians added up a series grouping terms one way
and got one answer, added it up grouping terms another way and got another answer.
There was something wrong with this loose use of infinitesimals. It was always
dangerous and sometimes gave clearly wrong answers. At that point, a great
revolution took place. It was initiated in 1821 by Augustin Cauchy, who intro-

duced the concept of 'Timit'. This was made into a rigorous concept by Karl



Weierstrass in the 1870's systematically and it took the place of the previous
loose use of infinitesimals and infinity.

Thus the mathematicians had been properly frightened about infinity and they
excluded its use until the last quarter of the nineteenth century. Then a brave
man named Georg Cantor, (after the pioneering work of Bernhard Bolzano in 1851)
opened up an entirely new outlook. He reintroduced the concept of infinity con-
sistently, through the concept of 'set'. The 'new math' in which many modern
children were educated is based on this concept of set.

Cantor's own definition of a set was that 'it is a multitude conceived of
by us as a one'. We consider a collection of objects as one population and that
makes a set. More picturesquely and explicitly, one mathematician suggests we
think of a set as follows: Imagine a transparent tightly closed bag or impene-
trable shell. Suppose that all elements of a given collection 'A', and no other
objects, are present within the shell. This is a good way to visualize uniting
all the elements into the set 'A'.

A set can be either finite or infinite, since it can contain either a finite
or an infinite number of objects. Thus the concept of a set provides a very good
foundation both for the mathematics of the finite and the mathematics of the in-
finite. Indeed, among the finite sets are those which contain no elements at all.
This 'null set' concept is very important, and reminds us again of India. The
people of India are responsible for the invention of the zero, one of the great
contributions to human thought. Zero is a number - it is needed to complete the
system of numbers. (Subtracting any numbéf;ézgtan equal number leads to zero).
More generally, in almost every complete mathematical system there must be a null

number. Now there are null sets; some we are sure of, some we are not sure of.

An example of a set we are not sure of is the set of all 1iving plesiosaurs. It

is possible that the 1iving plesiosaur set has one member - the 'monster' at Loch



Ness. But if that 'monster' turns out not to be a plesiosaur, then that set is
a null set.

For an example of the finite case, consider the set of all living people on
earth. There is also a set of all living people who have passed their 21st birth~
day; it is a 'subset' of the first set.

As we have remarked, sets can be infinite too, and that is when the fun begins.
One of the first things that Cantor pointed out is that an infinite set has the
property that the part can be equivalent to the whole (as with our infinite hotels).
Now, how can that be? What do we mean by 'equivalent'?

Cardinality

Even primitive peoples have two concepts of number: 'cardinal' and 'ordinal’.
Ordinal number is the kind we are used to on an elementary level (1, 2, 3,...),
when we not only encounter a finite set but have all its elements arranged in a
definite order. Then ordinal number is based on straight counting. But this sys-
tem of counting is not practical even for large finite groups (such as people in
a big hall). There is, however, another way of measuring the size of a set -
finite or infinite - by what is called ‘'cardinal number' or ‘cardinality'. The
cardinality concept involves matching between sets without restricting the orders
of elements within the sets. We shall first explain the meaning of 'equal cardi-
nality', and later the meaning of 'greater' and 'lesser' cardinality.

Suppose we come into a large hall and are able to have a really good look at
everything there. We see many people and many seats, with one person to each
seat, and one seat to each person; every seat is occupied and no persons are stand-
ing. We see at once that there are just as many persons as seats because they
are all paired off. This kind of one-to-one matching is what is usable with an
infinite as well as with a finite set. It is the way we measure one infinite set

against another infinite set.



The definition of "equal cardinality” or "equivalence" of two sets is then
that there is a one-to-one correspondence between the two sets; every member
of one set can be matched with a member of the other set, one to one, back and
forth, and there are no membérs left over on either side. It is by this defi-
nition that a part can be equivalent to the whole. For example, take all whole
numbers 0, 1, 2, 3, etc; take the subset of that set consisting of all even
whole numbers 0, 2, 4, 6 etc. There are equivalently many even whole numbers
as there are whole numbers, odd and even, because we can match them one to one,
back and forth: 1 to 2, 2 to 4, 3 to 6, 4 to 8, 5 to 10, and so on. There are
just as many of these as of those, cardinally speaking. Because it goes on for-
ever there is no problem. That is a very important point; it must go on forever;
otherwise it would not be true that there are equivalently many even numbers as
all whole numbers. Any set with the same cardinality as the set of whole num-
bers is said to be 'countable'. This is the first infinite or *transfinite” cardi-
nal number.

Cantor showed many other things, such as that there are 'just as many' points
on a little piece of straight line as on the whole infinite straight line (i.e.,
that these two sets of points are of equal cardinality). Even more extraordinary,
by this same definition of equal cardinality, there are 'just as many' points on
the side of a square as there are in the area of the square. Take a piece of a
straight line, say from zero to one, and consider the square one can build on
that; Cantor showed that there is a one-to-one correspondence between the points
in the square and points on the Tine. We will not show this explicitly for these sets
ok ' L donnvshvabion
Abpoints each of which forms a "continuum", but will give the feeling of it by
considering instead an infinite "square lattice” of whole number locations. This
will also explain and justify the earlier remark that infinitely many infinite

hotel populations can be accommodated in one infinite hotel. This can be done



by using one of Cantor's many devices by which he proved a one-to-one corres-
pondence. We arrange it so that every guest in every hotel is labelled by a
pair of numbers. The first number (row number) labels the hotel and the second
number (column number) labels the room in which the guest is. Thus, the number
(h,g) means the (hth hotel, gth room) and therefore is the location of a guest.
We will write these all down in a systematic order: (1,1), (1,2), (1,3), etc.;
(2,1), (2,2), (2,3), etc.; (3,1), (3,2), (3,3), etc. Thus we can indicate all
the guests in all the hotels in a square array of 'ordered pairs'. Now we want
to squeeze them all individually and without omissions into the rooms of one
hotel which are just labelled by the single sequence of numbers 1, 2, 3, 4, 5,
etc. This is done by 'squares'. We start with (1,1) and install him in the
first room of the single hotel. Thereafter, beginning with (1,2), we proceed
from the top down and then across to the left. In other words, the second in-
stallation takes care of (1,2), the third takes care of (2,2); then left to take
care of (2,1). Continuing in this manner we take care of all the people, ex-
hausting all the possibilities in the square array and at the same time using
up all rooms in the single hotel in a serial order. It is easy to check that
nobody is Teft out, and there is a simple formula for where in the single master
hotel each guest goes: Guest g in hotel h goes into the rooms of the master ho-
tel as follows: into room (g - 1)2 + h if the number h is less than the number
g, into room h2 + 1 -g if the number g is less than the number h. Once we have
established a one-to-one correspondence between all gquests in all hotels and the
rooms in one single hotel we can take care of all of them. So, in short, one
can have two - or many - infinities which, added or subtracted, are left infinite.
By letting guest room numbers represent numerators, and hotel numbers de-

nominators, the proof that we have just given can be adapted to show that the

set of all 'rational numbers' (fractions, i.e., ratios of two whole numbers) is



countable.

One of the things that Cantor found out as soon as he had defined cardinal
equality, i1s that he was naturally led to a definition of what it means for one
infinite set to be 'cardinally larger' or ‘cardinally smaller' than another.

What does it mean for one infinite set to be cardinally larger than another?
Suppose I come into an infinite hall and there are infinitely many chairs and
infinitely many péop!e, but 1 see that by some systématic procedure - extrapola-
ted to infinity - I can match all the people to a subset of all chairs but I
cannot match all chairs to any subset of all people. In other words, although to
every person there is a chair, there is not to every chair a person. (No one

is standing but some chairs are empty.) I would immediately say there are fewer
persons than chairs. This is how one defines "smaller than®. Likewisé, there
are more chairs than persons. This is how one defines *larger than".

To give an example of a set larger than countable we go to the set of all
real numbers. It is easier to visualize their properties if we represent the
numbers one-to-one by all the points on a line - the so-called "real line® - and
we aséociate each point with the number which gives the distance of the point
from the origin, zero. For brevity we identify the point with its distance num-
ber and we say "the point %", "the point 1", etc. Some of these numbers can be
expressed as bona-fide fractions, i.e., a ratio of two whole numbers (3/4, 2/3,
and so on). But many of them cannot, as was found out by the Pythagoreans. These
numbers which cannot be expressed as a ratio of two whole numbers are called
"irrational' precisely because they cannot be expressed as a ratio of two whole
numbers. (The square root of two is one simple example of such an irrational num-
ber. (It is easy to find the point on the line which corresponds to the square
root of two: build the square of side-length one, with the real line as its

diagonal and with the zeré:gfkthé real Tine at one corner of the square. The



diagonally opposite corner to the origin is then the point whose distance from
the origin is the square root of two. This follows from Pythagoras' theorem
on right triangles. It is easy to prove that this number whose square is 2 can-
not be expressed as any fraction.6) Further, the square root of 2 is a solution
of the algebraic equation x2 - 2 =0. It is an example of what is called an
algebraic number, as is also any rational number; the }gtter is a solution of
the simplest algebraic equation Dx - N = 0 or x = N/D. In general, algebraic
numbers are *roots" or solutions of any algebraic equation, i.e., a sum of in-
teger powers of a variable x with integer coefficients - the sum being equal to
zero. If we take the set of all such root numbers on the real line between zero
and one, or on the infinite real line - it does not matter which - this set is
still equal in cardinality to that of the rational numbers and the whole numbers;
i.e., the set of algebraic numbers is countable. In fact, this result is a
special case of a powerful general theorem:

If every element in a set can be specified by a finite collection of

whole numbers - the 'labelling prescription' or 'numerical indexing'

of the set - then the set is either finite or it is countable.

We can state an equivalent theorem, which is even more interesting to the
layman, who is more used to words than to numerical indexing. Let us define a

set of describable numbers as that collection of numbers such that a precise de-

scription in words (this is equivalent to the labelling prescription in the general

theorem just cited) can be given of each (and all) of the numbers in the collection.

6. When the Pythagoreans, whose entire world view was based on whole number
harmonies, made this discovery they were very impressed. To mark the awe=-
some occasion they sacrificed a hecatomb of oxen, of which Heinrich Heine
remarks: "And ever since, when a new truth comes to light, the oxen are
very afraid.”



In other words, not only is the whole set defined, but each number in the
set is distinguishable from every other; not only common but distinguishing
characteristics are given by the definition. Then we have that: any set

of describable numbers is countable; the set of all describable numbers is

countable and naturally contains, for example the set of algebraic numbers.
Transcendental Numbers

The set of all algebraic numbers is countable. A1l those which are not
algebraic are called "transcendental”. An example of a transcendental number
is Tv , the ratio of the circumference of a circle to the diameter. This is
equal to 3°14159. . . indefinitely. It cannot be expressed as any finite deci-
mal, because it cannot be gxpreiisd as a ratio of whole numbers. Further, as
was proved after Cantor7§<%§%;:/ TT  cannot be expressed as a solution of any
algebraic equation. It is a transcendental number.

It was a great discovery by Cantor in the latter part of the nineteenth cen-
tury that the infinity of numbers which cannot be expressed algebraically is a
larger infinity than countable i.e., then the infinity of whole numbers. The
set of all transcendentals is uncountable in the sense that it outnumbers the set
of all whole numbers or algebraic numbers. Even though the algebraic numbers are
very dense on the line - indefinitely close to each other everywhere on the line -
there are many more numbers on the Tine which are not algebraic. More generally,
the set of all nondescribable numbers (the set of all nondescribable transcen-
dentals) is of a larger infinity than the countable infinity.

The transcendenta}s outnumber the algebraics in that we can match every alge-
braic number to a transcendental but we cannot match every transcendental number
to an algebraic number. Thus *almost all* the real numbers are transcendental,

and they comprise a larger infinity than the whole numbers. A formal proof of

this important result may be found in the standard mathematical Titerature. The



proof involves a general idea which leads to the construction of an unending
sequence of transfinite cardinals each greater than(but not necessarily next

to) the one preceding. This idea may be introduced by a simple example. Suppose
we consider a committee constituted of three people. What is the number of ways
in which subcommittees might occur? In other words, allowing presences and ab-
sences for each of the three distinguishable individuals involved, how many
different subcommittees can we have? Clearly each person may be present or ab-
sent. This may be combined with the presence and absence of each of the other
persons. The upshot is that we have 23 = 8 possibilities, so there can be eight
different subcommittees. The cardinal number 8 1is of course greater than the
cardinal number 3. Formally, we may represent presence of a given individual by
the digit 1, and absence by the digit 0, and the number of ways of having a sub-
committee amounts to the number of ways in which the digits 1 or 0 may be assigned
to three objects, i.e., éi or 8. ATternativeTy,we can say that we are talking
about the number of all possible subsets of a set of three objects, or the number
of possible committees in a department of three.

Quite generally, it turns out that we have the following result. Consider a
committee A of a given cardinalitytﬁ'. Let g be the cardinal number of all
possible subcommittees of A. (This is the number of all possible subsets of the
set A; alternatively expressed,‘g' is the number of»ways in which the digits 1

and 0 may be assigned to each and every member of the set A.) The result is that

S = Z;R is a larger cardinal than i'. The proof goes for infinite as well as

finite committees (sets). In this manner one knows that there exists an unending
ever-increasing sequence of cardinal numbers7. ' Cantor demonstrated that the
cardinal number C of the set of all points on a line is equal to the cardinal

number of all subsets of whole numbers and therefore C is greater than the cardinal

7. One has often suspected that the committee system is connected with pro-
Tiferation on to infinity!
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number of the set of all whole numbers. His proof that transcendental num-
bers exist and in a larger infinity than that of whole numbers was given in
1873 and produced a great impression among mathematicians. Cantor had been
able to demonstrate the existence of transcendentals without constructing a
single concrete example, using only general arguments; but, as the mathema-
tician N, Y. Vi?enkin8)writes: 'The virtue of Cantor's proof was at the same
time its weakness. It was impossible to deduce a rule from Cantor's reason-
ing which would allow the construction of even a single transcendental number,
to say nothing of a test for the transcendence of such numbers as 7 or

2 Vﬁi His argument constituted, as mathematicians say, a pure exiséence proof...
it became clear that the algebraic numbers met with at every step in mathema-
tics are really extremely rare, while the transcendental numbers so hard to
construct were really the common ones.' How hard transcendentals are to con-
struct can be seen from the fact that the French mathematician Liouville had
been able,Awith great effort, to find a few transcendental numbers in 1844,

The proof that m was transcendental was first given by Lindemann in 1882. It
was a great mathematical event, demonstrating conclusively that it is impossible
to 'square the circle', i.e., that it is impossible, with the classical Eucli-
dean instruments of ruler and compass, to construct a square having the same
area as any given circle.

The transfinite cardinals are labelled not by Greek, or Roman, or Chinese
characters but by the Hebrew alphabet letters. The first one is called A?epho,
that is, the countable infinity, and the next one is called A?eph]. There arose
the great question: Is the number of points (C for continuum) on a line, or
equivalently, the cardinal number of transcendentals, the next transfinite num-

8. Stories About Sets, by N. Ya. Vilenkin, (Academic Press, New York and
London 1969).



21.

ber following the cardinal number of integers? Is there an Aieph} between
C and A]epho? The hypothesis that there is nothing between is technically
known as ‘the continuum hypothesis' and if it is valid then C is Aieph1.

Some very clever people tried for several generations to confirm or re-
fute the continuum hypothesis. Finally it was proved by K. Godel, whose
general studies of the problem of consistency revolutionized formal logic -
and P. J. Cohen, that one can either accept (Godel) or reject (Cohen) the
continuum hypothesis. One has a consistent theory either way. The situation
is similar to that which occurs with non-Euclidean versus Euclidean geometry.

It is perfectly consistent either to abandon Euclid's fifth postulate concern-
ing the existence of a unique parallel to a given line through an outside point,
or to accept this postulate. In the first case we have the two consistent
systemsg) of non-Euclidean geometry and in the second case we have the consistent
system of Euclidean geometry. So in the same way it is possible to have numbers
in between ATephO and C or not to have such numbers. Thus we are allowed to

have different consistent systems of transfinite arithmetic.

It is possible to construct an unending sequence of higher and higher in-
finite cardinal numbers. In each case we construct a higher cardinal number by
considering the number of ways (functions) in which we can assign the values 0
or 1 to each member of the set with the Tower transfinite cardinality. This
number of ways defined on the set of lower transfinite cardinality gives us a
higher transfinite cardinality. Whether or not it is the next transfinite
cardinality depends on whether or not one adopts the "generalized continuum
9. In the "hyperbolic" non-Euclidean geometry the fifth postulate is replaced

by one admitting an infinite number of parallels in Euclid's sense; in the

"elliptic" or "spherical” non-Euclidean geometry there are no Euclidean
parallels.
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hypothesis". In any case one arrives at an algebra and an arithmetic of
the infinite. Here we write only two formulas in the arithmetic of the in-
finite. One we demonstrated earlier, in the one-to-one correspondence 'by
squares' of the ordered pairs to the whole numbers, and the other we have
only indicated:
| Aleph X Aleph_ = Aleph , C = 2A1eph0_
0 0 0
In order to give meaning to the question raised by the continudm hypothe-
sis we must know what is meant by A?eth, "the next" transfinite cardinal
after Alepho. This was established by Cantor in developing the theory of
ordinal numbers into the transfinite domain. The ordinal number of a set re-
sults from distinguishing a particular order of the members of the set. The
finite ordinals are finite arrangements of the familiar whole numbers. The
first transfinite ordinal - labeled w - corresponds to the set of all posi-
tive whole numbers in natural order,
1, 2, 3, 4, . .
and is defined by the following properties:
(a) There is a first member,

(b) There is an immediate successor to every member,

(c) There is an immediate predecessor to every member, except the
first,

(d) There is no last member.
If we interchange the words "first" and "last", and simultaneously, the words
"successor" and "predecessor"”, we define *w ("star w "), the set of all nega-
tive whole numbers in natural order:
..y -4, -3, -2, -1,

Addition of two ordinals is then defined in the obvious way except that order



matters when the transfinites are involved. For instance we find

( nis the finite ordinal 1, 2, ... )
These relations hold because on the left side of the unequal sign property (d)
is missing, whereas on the right side all four properties, (a) to (d), hold.
These two sides are examples of sets (of which there are many other examples)
of different order types, which still have the same cardinality A1eph0. This
is because they can be rearranged (changing order!) to be in one-to-one corres-
pondence with the set of all whole numbers, i.e., they are countable. ATl such

sets are called well ordered if two sets of conditions are satisfied. First:

they are simply ordered, i.e., distinguishably and unambiguously ordered and

also linearly (if A precedes B and B precedes C, then A precedes C.). Second:
they satisfy the following three properties:
a) There is a first member

b) There is an immediate successor to every member except the last
if there is a last.

c¢) Every "fundamental segment" of the set - i.e., any lower segment
with no last member - has a "1imit" in the set; the "Timit" is
the member next following all members of the fundamental segment.

(In the example

n is the last member,  is a fundamental segment, and 1 is the Timit of w .)
Products and powers of ordinals were defined by Cantor. (Again "order" is
of the essence and must be preserved carefully ) and it turns out that

[0

n-1 w ®
n S + L Wse..w ST w L.,

wrt w

which are the ordinal numbers of well-ordered sets all have the same cardinality

ATepho since all can be arranged to be in one-to-one correspondence with the
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natﬁra} numbers 1, 2, 3, ... Now the class of all possible kinds of well ordered
sets each of cardinality AlephO defines a set with transfinite ordinal larger
than that of any of the constituent sets. This transfinite ordinal is represented
by $ and the corresponding cardinal number of this entire class was called
A?eph] by Cantor. Similarly the class of all possible types of well ordered sets
of cardinality A]ephv forms a ( v+ 1)st class whose cardinality Cantor désig-

nated by Aleph and so on. Cantor thus obtained an infinite sequence of ever-

2+ ]

increasing transfinite cardinal numbers. But, as Cantor writes: "Even this

does not exhaust the concebffenuof transfinite cardinal number. We will prove

the existence of a cardinal number which we denote by A}ephw and which shows

itself to be the next greater to all the numbers A1ephv; out of it proceeds in

the same way as meph.l out of Aleph a next greater Alephw +1° and so on, with-

out end."

Now we understand what the issue of the continuum problem and its genera]izéd form

means. In fact the question is deeply related to the question of what order means:

"The question whether every transfinite cardinal number is necessarily an Aleph-

number... is equivalent to the question whether every (set) is cabab1e of being

(well-ordered)."” 1)
Thevfurther development of the theory of sets is very interesting. It Tled

to a revolution in mathematics because if provided a basis for both the mathema-

tics of the finite and the infinite. One finds the theory these days in all kinds

of books, some still called 'set theory', oihers 'measure theory', others 'theory

of real variables', and so on. A1l the great branches of modern mathematics -

functional analysis, topology, higher algebra - have set theory at their founda-

tion. They in turn have many applications in modern science and technology. Even

in that grand old branch of mathematics, geometry, concepts which were originally

10.  Contributions to the Founding of the Theory of Transfinite Numbers by Georg

Cantor (translation and introduction by Philip E. B. Jourdain, Dover, N. Y.
1955) p. 109.

1. E. W. Hobson The Theory of Functions of a Real Variable (Cambridge University
Press )p.238.




taken for granted, such as 'curve', 'surface' and 'volume', have been revised.
Propositions which everybody had thought were obvious, such as that a square is
two-dimensional, a cube three-dimensional, and so on, had to be re-examined,
and very strange results were found by the mathematicians. Using Cantor's de-
finitions, they found all kinds of new and bizarre mathematical objects coming
into the mathematical zoo. For example, they found that there are infinitely
prickly curves and also curves which have non-zero areas. If we define a curve
as carefully as we can by a significant definition, then there are curves which
have a finite non-zero area. It was once thought that a curve could only have

zero area, but there are curves which are so complex and cover so much of a plane

that they have a well defined positive area. In contrast, there are domains which
Took two-dimensional - which Took Tike surfaces - but which have no well defined
area. This can come about because we are dealing with a region for which the
boundary curve turns out to have non-zero area. Therefore, if one adds the boun-
dary to the region one has a larger area; if one takes it away one gets a smaller
area. A1l kinds of strange properties like this have emerged, and the mathema-
ticians have become very careful in their definitions and very strict in their
arguments.

And so, too should we be in all formal matters. As we know, however, there
are aspects of Reality which are not formalizable, and here the door must be left
open to the intuition and insight by which alone the unknown may be experienced.
The fact that almost all numbers such as the set of transcendentals, finite though
each may be, require an infinite expression in terms of the natural numbers evokes
a resonance with the deeper Tevels of consciousness. Likewise the existence of an
unending sequence of ever higher infinities is an intimation to us of the existence
of higher levels of consciousness.

Referring back to the discovery of alternative different systems of transfinite
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arithmetic one can hardly overestimate the importance of the discovery that
"both" possibilities are true in such instances but - let it be noted - not
in conjunctive affirmation, but what may be called disjunctive or complemen-

tary affirmation: There exists more than one geometry, more than one algebra,

more than one transfinite arithmetic etc. This is a good place to refer to
the devastating tetralemma dialectic (fatuskoti) of the great Buddhist anti-
logician Nagarjuna (Ist-2nd century A.D.). The structure of this four-cor-
nered negation which Nagarjuna employed to knock down (in good mathematical
spirit by demonstrating internal contradictions) the arguments of those who
attempt to analyze reality logically is as follows: There are four alternatives:
(i) A positive thesis
(ii) The opposite counter thesis
(iii) A conjunctive affirmation of the first two
(iv) A disjunctive denial of the first two
Clearly the fruitful development of mathematics shows the possibility of another
alternative, modifying number (iii): both thesis and counterthesis are true
but in different systems, each self-consistent in itself. Thus might be resol-
ved the remaining differences - subtler and lesser than the protagonists of each
may have maintained - between Sankara's Advaita Vedanta and Nagarjuna's Mad-
hyamaka Buddhism. Then, the indescribable and translogical fullness of Brahman
and absolute subjectivity of Nirvana are complementary and equivalent.

Again, an informal response is evoked by the extraordinary theorem in formal
logic which Godel proved: in every sufficiently rich formal logical system there
exist unformalizable elements which can neither be proved nor disproved. Such
statements are called 'undecidable statements'. (Echos of Buddha and Nagarjuna!).

This theorem means that there exist unformalizable elements in every suf- '

ficiently rich formal system. It is not surprising that Godel's discovery is re-
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garded as one of the most profound of our time. It is a tremendous revelation
to modern man that formal Togic can prove its own limitations. One feels that
this discovery is connected in a deep way with the principle which appears over
and over again in Vedic science and in the entire Eastern traditional world
view: the principle of inclusion or co-existence of opposites or, sometimes,
the co-nonexistence of opposites. For example, the great Hymn of Creation in
the Rig Veda begins: 'There was not non-existence, there was not existence at
that time..."' One does indeed feel that an ancient door has been opened again
by such theorems as Godel's theorem. There is some profound nuance of meaning
in that the principle of inclusion of opposites makes its appearance centrally
in the ordering of those very infinities which provide such an evocative parallel

to higher states of consciousness.



