Concerning Dr. Carl G. Jung

Part 1 of 2

Franklin Merrell-Wolff
May 21, 1975

Recently Gertrude and I were on a ten day trip and I took along one book, namely, the Memories, Dreams, [and] Reflections of Dr. Carl G. Jung. This is essentially an autobiographic work, although it was only in part directly written by Dr. Jung. Much of it was written from conversations held with one of his followers who had been assigned the task of producing this work, and she wrote up the portion which she handled in the first person as though written by Dr. Jung. The work I regard as certainly one of the most important produced by Dr. Jung, and, from my point of view, perhaps the most important, for it is a revelation of the inner consciousness of this great therapist. In dealing with subject matter which is essentially of a subjective sort, it is impossible to use the methods of external laboratory research. That which takes the place of the laboratory consists of the inner processes of the mind, and this can be revealed only by a subjective confession or report. It is introspective material. It is not available to the purely external observer, and it is material of the very highest importance with respect to the problem of transformation in consciousness.

Material of this sort furnished the background of William James’ work called The Varieties of Religious Experience since he was concerned with the psychological factors involved in the religious consciousness, but he complained of the fact that the Oriental sources supplied us with very little of this material. They usually came forth with some statement of value derived from the transformation in consciousness, and in a few cases this took a philosophic form, but the personal confession or introspection that is of the primary interest to the psychologist is not often found, so James tells us, in the Oriental cases. The result was that his work was confined considerably to Western sources where such subjective, autobiographical material is more frequently communicated.

In a certain sense, the psychological interest is not something which we derive from the Orient, but is rather something which we have developed in our own Western scientific research. Thus, this material supplied by Dr. Jung is of the very first importance, for while he was professionally a therapist in the sense of being a doctor of the mind, one who dealt with the psychiatric problems of persons who were mentally ill, yet he is a significant figure far beyond this relatively limited field. He entered into the problems connected with the essential religious life—material which is of interest to us in a much larger sense than that of simple therapy. Therefore, we have here a record from a competent man in the field of subjective research, and I do regard this book as being perhaps the most important produced by Dr. Jung, at least it is of the greatest importance from the standpoint of my own interest. I shall not deal with Dr. Jung exclusively in an objective sense, but I shall relate his experiences, his strengths, and his limitations to my own experiences, and thus strive to build a picture that is more complete with respect to the subjective processes. In certain respects, my own attitudes parallel those of Dr. Jung.
The tendency to be solitary in childhood is in common. The interest in the subjective side rather than the objective side is also in common. But, there is a point in which there is a radical contrast, and this is just the item which renders this study of more especial importance. The point of contrast is brought out by a certain quotation from the book which I shall now read into the tape. The quotation in question begins on p. 27 and is part of the chapter called “School Years.” Quoting as follows:

School came to bore me. It took up far too much time which I would rather have spent drawing battles and playing with fire. Divinity classes were unspeakably dull, and I felt a downright fear of the mathematics class. The teacher pretended that algebra was a perfectly natural affair, to be taken for granted, whereas I didn’t even know what numbers really were. They were not flowers, not animals, not fossils; they were nothing that could be imagined, mere quantities that resulted from counting. To my confusion these quantities were now represented by letters, which signified sounds, so that it became possible to hear them, so to speak. Oddly enough, my classmates could handle these things and found them self-evident. No one could tell me what numbers were, and I was unable even to formulate the question. To my horror I found that no one understood my difficulty. The teacher, I must admit, went to great lengths to explain to me the purpose of this curious operation of translating understandable quantities into sounds. I finally grasped that what was aimed at was a kind of system of abbreviation, with the help of which many quantities could be put in a short formula. But this did not interest me in the least. I felt the whole business was entirely arbitrary. Why should numbers be expressed by sounds? One might just as well express a by apple tree, b by box, and x by a question mark. a, b, c, x, y, z were not concrete and did not explain to me anything about the essence of numbers, anymore than an apple tree did. But the thing that exasperated me most of all was the proposition: If \(a = b \) and \(b = c \), then \(a = c \), even though by definition \(a \) meant something other than \(b \), and, being different, could therefore not be equated with \(b \), let alone with \(c \). Whenever it was a question of an equivalence, then it was said that \(a = a \), \(b = b \), and so on. This I could accept, whereas \(a = b \) seemed to me a downright lie or a fraud. I was equally outraged when the teacher stated in the teeth of his own definition of parallel lines that they met at infinity. This seemed to me no better than a stupid trick to catch the peasants with, and I could not and would not have anything to do with it. My intellectual morality fought against these whimsical inconsistencies, which have forever debarred me from understanding mathematics. Right into old age I have had the incorrigible feeling that if, like my schoolmates, I could have accepted without a struggle the proposition that \(a = b \), or that sun = moon, dog = cat, then mathematics might have fooled me endlessly—just how much I only began to realize at the age of eighty-four. All my life it remained a puzzle to me why it was that I never managed to get my bearings in mathematics when there was no doubt whatever that I could calculate
properly. Least of all did I understand my own moral doubts concerning mathematics.

Equations I could comprehend only by inserting specific numerical values in place of the letters and verifying the meaning of the operation by actual calculation. As we went on in mathematics I was able to get along, more or less, by copying out algebraic formulas whose meaning I did not understand, and by memorizing where a particular combination of letters had stood on the blackboard. I could no longer make headway by substituting numbers, for from time to time the teacher would say, “Here we put the expression so-and-so,” and then he would scribble a few letters on the blackboard. I had no idea where he got them and why he did it—the only reason I could see was that it enabled him to bring the procedure to what he felt was a satisfactory conclusion. I was so intimidated by my incomprehension that I did not dare to ask any questions.1

What is revealed here is something which may be called a blind spot in comprehension. Now, this may be a truth that is generally valid. I too have my blind spots which I realize when I read Dr. Jung. I marvel that he is able to derive meaningful value out of the rather crazy stuff that wells up in dreams. I find them no aid to understanding at all; and in his formulations—since he often refers to material that comes from these, to me, seemingly weird sources—in abstract statements, I am at a loss as to what he may mean. He seems to finish with an abstract statement that needs several specific illustrations to arouse meaning in my own mind. Therefore it is clear that here too is a blind spot.

Now, this has a bearing upon the structure of our relative consciousness. There is reason to think that in any one incarnation, not all of the individual is manifested, that something is held back—not manifested in that incarnation, not given expression at that time. And this would correspond to a blind spot. It may be something that is part and parcel of the whole entity, and it may well be that in a subsequent incarnation this held back portion would be the revealed portion. I’ll have more to say on this subject a little later, but let us deal with this blind spot revealed by Dr. Jung.

For my own part, in as much as mathematics was the most loved of all the subjects I ever studied and gave the greatest clarity of meaning, the obscuration in Dr. Jung’s mind is something I find very difficult to understand. I’ve asked myself how would I attempt to elucidate the difficulty which he has confessed to, for it appears as though it demanded an explanation of the completely simple and obvious. But this thought has come to me as probably or possibly pertinent. Let us think of a, b, and c as representing in a given case a is equivalent to 4 sheep, b is equivalent to 4 cows, and c is equivalent to 4 horses. Quite clearly in that case the a, b, and c are different from each other in the sense of their concrete meaning of sheep, cows, and horses. But the mathematician is not concerned with that concreteness; he is concerned with the abstraction of the number itself. There is the four-ness manifested in the three cases. This is called technically the cardinality of the entity. Now, in that case the cardinality of a is

4, the cardinality of \(b \) is 4, and the cardinality of \(c \) is 4. And therefore we have \(a = b \), and \(b = c \), and therefore \(a = c \). The cardinality is what the mathematician is concerned with. He is not concerned at all with the sheep, cows, and horses, in so far as he is a mathematician \textit{qua} mathematician. He’s dealing with an order of abstraction of the numerical values out of the total concrete situation.

Now, Jung is by his own emphasis an empiricist. He is concerned with the concrete situation as an empiricist and not with the abstraction that the mathematician is interested in; although, Jung, in his formulations, can be most bafflingly abstract in another sense. When we step from actual numbers, the relatively concrete entities, 1, 2, 3, 4, and so on, to the \(a, b, c \), and \(x, y, z \), we’re making an abstraction of an abstraction. We are not concerned with specific quantity, as such, but rather with laws that govern any order of quantity—relationships of a higher order of abstraction. You have, therefore, statements concerning \(a, b, c \), and \(x, y, z \) that are much more generalized than the statements in pure arithmetic. Then mathematics goes beyond this into still higher domains of abstraction, which would render simple algebra as something very simple indeed in contrast. It’s a movement of consciousness in a direction that is the opposite of the empirical; but when you ask the question is this justified, we can give a manifest empirical justification by reason of the mathematics which we have developed. Our modern scientific knowledge has become possible—to be sure the mathematical side is not the whole of the scientific picture, it is rather the resultant of two factors: one which is the empiric fact, which is a matter of sensible observation either directly or indirectly through instrumentation, and of the theoretical factor which at least in its most perfect development is mathematical. And as Millikan has said, physics, specifically, advances by these two legs; at one time the advance step is made by observation and at another time by the theoretical factor, which may be highly and quite abstrusely mathematical. The theoretical step can lead, then, to the prediction of an event or fact which can be subsequently verified empirically and which could not be reached by purely empiric processes alone. This, then, becomes an empiric validation of the theoretical process. To be sure, the marriage with the theoretical component is not so perfectly developed in the other sciences as it is in physics, but it is there also in some degree. These two factors have made our science possible. The possession of only one of these two would not render this science possible. It has been pointed out that the Greeks had a mathematical, a theoretical, understanding which was sufficient to have developed an advanced technology which they never did develop. What they lacked was the empiric element which was first supplied by Galileo in our later history of science. The two factors are necessary for the completion of knowledge. Dr. Jung explicitly is an empiricist, but not an empiricist dealing simply with external subject matter, as is the case with physics, chemistry, astronomy, geology, and so forth, but with a subjective subject matter where the observation is of a much subtler sort. And he uses the empiric wing almost entirely.

Let us consider now the second difficulty which Dr. Jung faced in his mathematical studies. This was the statement of the mathematical teacher that parallel lines met at infinity. You may remember that he said that this seemed like a device to fool peasants because it seemed to contradict the initial definition of parallel lines. But we have here an element in our mathematical thinking that involves the principle of limits. This is a subtle factor in our logical thinking that may be difficult for some people to grasp. It actually was understood by Archimedes, thus indicating that he was probably
one of the very greatest mathematicians of all time. The principle of thinking in terms of limits may be illustrated by a very simple series; it is the familiar series consisting of \(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8}\) and so on, every addition being one-half of the last addition. Now, if we take any finite number of steps no matter how large, the sum is always less than 2, but we can show that the difference between the sum attained and 2 can be rendered less than any quantity however small, and this implies that with an infinite number of steps the sum becomes actually 2. There is in this thinking an assumption that is very simple and rather obvious, that any logical step that can be taken can be repeated, and that means not that it loses its power of being repeated by use, but it can be repeated indefinitely. Now, this is not to be understood in the sense that as a psychological process it can be repeated indefinitely, or as a psycho-physical process such is the case, but only in the logical sense can it be repeated indefinitely. So in actual practice in any series involving an infinite number of steps, we prove a pattern with a limited number of steps and then extend it infinitely to a terminal that is indicated. The same thing can be applied to the case of the two right lines that are called parallel. Certainly the two right lines in Euclidean geometry are at equal distance from each other in any finite distance, but let us see how we would here apply the principle of limits that leads to the infinite and the evidence of the meeting at the point in infinity.

Let us imagine on a plane a right line—these lines are always assumed to be unlimited in their length—and that above this right line in that same plane we establish a point and have a perpendicular from that point to the given right line. Then through that point we also extend another line which to begin with will meet the first line at some finite distance. Then we can show that the sum of the interior angles on the perpendicular line that it makes with first and the second right angles is less than two right angles, or 180 degrees. Then we extend the point of intersection of the two lines in a number of steps outward towards the infinite. The sum of the angles in that case made upon the perpendicular line will grow towards two right angles, and ultimately will reach in the limit the value exactly of two right angles, at which time the second line will intersect the first line at infinity. This may suggest an approach to the way that this conception is derived, that parallel lines meet at infinity. Bear in mind, however, this applies only in the Euclidean geometry. When we deal with the Lobachevskian geometry and the Riemannian geometry, other consequences follow because the group of assumptions upon which the geometry is built differs.

Now, here is a kind of thinking that goes beyond the empiric. We do not have a sensuous determination of parallel lines meeting at infinity, or as in the Riemannian geometry perhaps at a finite distance, but we have a logical determination. Here is an act in consciousness with respect to which the neurophysiologist’s correlation of neurological conditions with conscious states is entirely irrelevant because we are moving now in terms of the meaningful content of consciousness and the relationship of consciousness to brain or nerve is totally irrelevant. What I’m getting at here is the fact that in mathematical thinking we have a way of moving in consciousness that transcends empiric determination, but which, when it is applied to empiric problems, leads to results that in turn can be empirically verified. It does not start from an essentially empiric base, but is another way of consciousness, and it therefore can open doors which would be closed to the only empiric type of consciousness. This point is of supreme importance if one is to understand how it is possible to have a metaphysical knowledge.
In connection with this question of how is a metaphysical knowledge possible, another reference to certain statements of Jung concerning his earlier life are of importance. While he was still a student in the gymnasium, according to his statement, which covers our high school period plus something of the college period, he began, on his own, to read certain philosophic writers, among them Schopenhauer, Hegel, and Immanuel Kant. In fact, he states how he got into trouble with some of his fellow students who regarded him as something of a braggart when he was so unwise as to speak of these readings. However, it is a testimony to his own personal brilliance that he was able to get value out of such reading when in point of fact a work like the Critique of Pure Reason properly belongs to graduate university study. It marks him as an extraordinarily brilliant individual. But, having gone through this in his early days, he later says that he dropped philosophy because the mind when working with philosophy went far beyond, as it seemed to him, the possible resources of the mind into something that might be called metaphysical determination. And he replaced his interest in philosophy with an interest in psychology, which again must be understood not in the usual sense of an experimental psychology in the laboratories, but in the sense of a study of the psyche as is revealed very largely through dreams, association experiments, hypnagogic vision, and through myth.

However, from Immanuel Kant’s Critique, Dr. Jung derived a permanent value, which he refers to again and again in his many writings. To understand this value, a little review of the significance of Immanuel Kant’s work is of importance for us at this time. You should remember that Immanuel Kant was aroused to an examination of our cognitive processes by the consequences David Hume derived from the fundamental assumptions of John Locke, carrying out the consequences with rigorous logic. The ultimate resultant was that by empiric means alone, we can derive no knowledge of law, therefore no science and, also, all metaphysical knowledge would be impossible; and as Kant pointed out in the “Introduction” to the Critique, pure mathematics would be impossible. This aroused Kant to the problem that was implied, and as a consequence of his work there was developed a way whereby knowledge of scientific law was possible and mathematics was possible, but Kant confirmed the position of David Hume with respect to metaphysics, namely, that if our cognition is restricted to sense perception and conceptual cognition then a metaphysical knowledge is impossible. Kant thought that he had determined how a pure mathematics was impossible\(^2\) by a correlation of geometry with a transcendental aesthetic principle of space, and derived arithmetic, as he thought, from the transcendental conception of time. This is questionable. However, that mathematics is possible was fully accepted by Immanuel Kant, as it must be by anyone who seriously considers this question. But the negative determination of Kant that a metaphysical knowledge is not possible, when our cognition is restricted to sense perception and conceptual cognition, is a point that Jung derived and reaffirms continuously in his work. So, his results are as Kant’s were, negative with respect to a possible metaphysical knowledge. On the other hand, he replaces the values that we ordinarily expect to derive from metaphysics by the study of the images that are implanted in the psyche; in other words, he affirms that there is in the psyche an implantation of the values which are of a religious importance. However, to many this

\(^2\) Wolff meant to say “... pure mathematics was possible ...”
seems as though religious values were only psychological or “nothing but” psychology. And with respect to this criticism, Jung apparently becomes at times quite heated, for he says “nothing but” is a misinterpretation of the importance of the psyche. He, thus, obviously uses psychology as a study of the psyche rather than as a study of experimental processes in the laboratory.

This brings up a very important question. Kant’s determination, as far as it went, seems to be conclusive on the matter in so far as he says that with sense perception and conceptual cognition it is impossible to have a metaphysical knowledge—therefore a knowledge of God, a knowledge of freedom, a knowledge of immortality. Now, this is the question that struck me in my own personal experience as the one of greatest importance, and the thought that came to me was that if there exists another way of cognition in addition to sense perception and conceptual cognition, then there is the possibility that a metaphysical knowledge is possible, and that therefore the religious goal or the religious interest has a valid background.

Jung derived a considerable value, by his own admission, from the thought of Schopenhauer, but he had very little use for the thought of Hegel, since he regarded Hegel as hypostasizing reason and the idea, and that this was an illegitimate process. Now, there is a line of thought that may reaffirm the validity of Hegel’s use of reason and the idea which has a certain justification in one contribution of Dr. Jung himself. I refer now to his conception of “synchronicity.” Synchronicity is the idea that there are factors operating in the world and in the human psyche that are acausal in there nature, that there can be a synchronous appearance or manifestation of events that are significant, that are law related, but are acausal. Jung’s treatment of this subject is quite obscure. There is, however, another treatment that renders it very clear and essentially simple, that is the treatment of Leibniz—again, a treatment from the standpoint of the mathematician rather than of the empiricist.

We can posit, now, these conceptions: that there is a macrocosm, which means the whole of all that is, everything that could be represented by the divinity or by the transcendent, everything whatsoever; that the process of world production and of entity production is a process of a microcosmic reproduction of the macrocosm, which is potentially infinite in quantity; thus, every entity whatsoever—whether a world, a human being, or a animal, or a whatnot—is a microcosmic reproduction of the macrocosm. Thus among different microcosms there could be a parallelistic development, something which Leibniz called a “pre-established harmony” so that there could be events which were acausal in nature but which happened at the same time and were governed by law. Now, with the assumption that the microcosm is a complete reproduction of the macrocosm, with the further assumption that there is an evolutionary process whereby a relative consciousness develops in the microcosm—so that at any given stage of evolution there is a non-complete reproduction in consciousness, but a progressive growth in consciousness of a reproduction of every element in the macrocosm within the microcosm—then it becomes in principle possible to know the macrocosm from complete knowledge of any microcosm. This is something that can be illustrated logically by use of a certain property of the mathematics of the infinite which proceeds as follows.

Let us assume that the macrocosm is represented by the sum total of all the natural numbers, that’s 1, 2, 3, 4, on to infinity; that a microcosm is derived by a process
such as the following: let us take the doubles of every element in the macrocosmic series. We would then get a series of the form 2, 4, 6, 8, and so on, consisting of all the even numbers. Now, considering the second series, it has equal cardinality with the first series because a reciprocal one-to-one relationship is established between every entity or element in the second series and the first series. Since the first series is infinite in cardinality, the second series is also a proper part of the first series since there are elements in the first series not contained in the second series, namely, all of the odd numbers. Now, from the second series we can derive knowledge of the first series by using an inverse function. We multiplied every element in the first series by 2 to get the second; let us now divide every element in the second series by 2 and we derive, then, the first series.

Now, this can be carried out into any number of microcosms. We could multiply the first series by 3, 4, 5, and so on, and thus derive an infinity of microcosms which were all equal in cardinality with the macrocosm but were proper parts of the macrocosm since the microcosms would lack certain elements that are present in the macrocosm. But those elements can be derived from each microcosm, and in the case of the first microcosm which consists of all even numbers, we can derive the macrocosm by dividing every element by 2, and we’d get 1, 2, 3, 4. Thus, we have in principle illustrated how it could be possible that the microcosm, which empirically seems to be very small as compared to the whole cosmos and all that is beyond the cosmos, actually could, from perfect development of self-knowledge, acquire knowledge of the All—represented in this illustration by dividing every element in the microcosm by 2. Therefore, the seemingly limited power of the human mind would have, in fact, the power to move into the transcendent and the infinite. And this would not be a matter of inflation, because it’s a principle that would be valid with respect to every microcosm whatsoever. Some individual microcosms might have achieved the awakening to this fact before others, but it would be equally potential in all others, therefore no inflation is involved in this. Therefore, the principle of idea and the principle of reason which Hegel was charged with hypostasizing could be viewed as perfectly valid. This is a suggestion as to how a metaphysical knowledge can be reestablished as possible in the face of Kant’s *Critique.*