Robert. M, Briggs,

Phoen ix;
Arizona
May 13,1964

Dtan_Fankin_ and Rectracte,
The ther evening ithe topreci of cousermenpation: with the Atomiltanx nee yos tronscendental prumbur. It n-a apponent frope thi' con wersitain that inp reeded mone infornzetuon and if your have time could coou renawen the fotlowemg questionsito fus fe the
(1) Th hen eds the term "Turnecendental" ang-anets and ly soham?
 on-an Athy evecuoded from that oprocip?
(3) If tranceendentaliane uratrorbo purahain, then

(4) Wheri signipficance of de tranacendartal numbers have if any?
(5) 2a pattemafice of trithay Lasicatly x necticcovery
 atepredion lug the predent wace?
Enom bret heeome ver intenention ani Transcondental pumben any theí mernazy, Anut informatron m tran rendental numburs nueuld be preatily-oszereciatod....

Qhe hant coupta of neepes 2 hroe hem gethin -1 milh the \& un exul 2 forid it enite

 atathe unis thi wardhn I muld toone heose

I milh nutherin wacatua, fthi yeyt po I nill not be ahle to emalthe nsuch thit dumanar.

I pure nont to Atoan year for yending tes
 - thenene picturaz of the form you mere bion in.

Fell peeter of leggy hetho for rae.
Lave,

$$
B=
$$

P.O. Box 559, Lone Pine, Calif.. May 15, 1964.

Somenow my first impression upon reading your letter 'was that you had in mind "Transtinite Numbers" and F eoon realized an edequate answer would be almót a book, if the ramifications in Mysticism and Philosophy along with Mathematics was taken into account. However, the error was not bo parm fetched when one remembers that Cantor's proos of the exiatence or a non-denumerable Trangfinite involvod the Transcendental Humbers.

To deterinine what transcendental Numbersplt is destrable to begin with the derimition of Algebrale Numbens. For a flrst approximation we may say: "An algebralc number is any number that can be a root of an algebraic aquation having integral coeficicients." But this becomes extended in the 11 ght of Cantor's proof that any root of an algebraic equation havingalseeraio mumbers (not exclusively integers) as coefficients is an algebralc number. An algebraic equation is one in which trigonometric, expinential and logerithmic functions do not appear. This extends the notion of algebraic maber to all the ordinary familiay numbers exeept two, 1.e., all integers, both positve and negative, all fractions, all irrationals of the type such as the nth root of g, sil imasinaries and $s 11$ complex numbers of the rome eplus jo, where i 16 the square roor of minus 1. The two excluded familiar numbers are pi and e.

Without going into time question of whether the principal of the excluded middie, characteristic of Aristotilan logic, in reasoning about infinite classes is valid or not, cantor proved or seemed to prove that the smoxs gum-total of all algebruic nuribers is denumerable, 1.e., can be placed in one-to-one correltation with the positive Integers. thet is to sey that they oan be counted, though it would tabe an infinite time to do ac. Guite otherwise is it with the Transcendentel Numbers. Cantor's demonstration seens to ahow that they are so much more numertous than aigebralc numbers that they cannot be counted; in other words they are non-denumerable. They. belong to an infinity of a higher order such as yo.

Assuming that tha cantor proot that the cardinality of the Tranacendental Numbers is infinitely greater than the cardinality of all akker algebraic numbers combined, it comes with something of a shock to realize that only two Transcendentala are well known. In the modern period of methematios (1.e., from Descartes to the present) a number of classes of Transcendental Numbers have been discovered, of which the following are two examples:

1. Numbers of the porm $\frac{1}{n}$ plus $\frac{1}{n^{2}}$ pluse $\frac{1}{n} 6$ plus $\frac{\sigma^{2}}{n^{2}}$ plus $-\ldots$. where n is a roal number greater than 1 and the indecies are the series of factorals.
2. AII numbers of the type a^{b} where a 18 neitner 0 nor 1 and b is any irrational algebraic number.

It is easily seen that in either case this gives us an infinity of Transcendental munbers. The ilstory of mathematice reveals that it is easier to sine infinite classes of Transcendentals than to prove that any glven numer, suen as, pi ande, are Tranacendentals. Hermite gave the proof in the case of e The transcendentality of e was proven by fiemite and of pl by Lifuermann.

The numberg pi and e are of suon tuportanoe that someone hes sald a univeree without those numbers could not exist, though tinis visw is not generaily accepted. But Kasner and Newian in their book, "Hathematics and the Imagination: have gaid; "Bui without these mathenaticsi artifacts, what we lrow about the sun and tides, Indeed our ability to describe ail natural phenomena, phyaical, blological, chomical or statistical; would be reduced to primitive: dimengione." The question here la reilly ph110sopidcal. As an Introceptional Idealist I lean towsid e vositive answer. to the guestion: Is a necessity for thought a necsselty Ior Reality?
(The last gtatement needs amplifioation. No doubt, on the ordinary lovel of thousht, such as thet which characterizes emplric science, there 1 s a contreat between the concept or idea and its referent: Thus the concept "tres" and the tree itsolf bolong to two adfferent orders; or, at least, 30 they appear. Here it would not seem that a law of thought is a law of nature. If all appears dualistic: But even, at a lower level of the High Indirference, 9 reported in "Pathways". concept and the object of conception fuged into Iuentity. The dichotomy vanished. In fact this is an sispect of advalta. At this leval one would say that there is no difference between a law of thought and a law of Reality. Now 211 this is pertenent to the mathematical question if one has in mind my theory of the nature of matnematics, particulary in the cace of Transesndental Vumbers and Tranafinite. Numbers. Bear in mind we are spesking only of Pure hathematics, not applied mathematice; which ie only the science of allowed error. First; there are three recognized theories of the nature of mathenatics, $1 . \theta$. Formalism, Isd by Hiloert, Logisticism; led by Fussell, and Intuitionalism, too by Brcuwer and Weyl. The formalists would say that mathemetics is no more. than e sort of meaningless game of chess wheinh, none the less, 13 played aesiducusly. The loeisticists would maintain thet mathematice 18 entirely reducible to logic, trough a more comprehensive logic than that of Aristotle. The intuitionalists would maintain that only some of mathamaties is valid, and they would abondon all mathematics involving the infinite. This comes closest to the engineers point of view. I do not find any of these views adequate, though, no doubt, reflecting part truths. Thus, no doubt mathematics is logic, but it is also more then legic. Spengler has well pointed out that at its highest rangea, the mathematician transcends abstraction and logic and is guiced by Vision. Logic elone is only a critic, it does not create or discover. This leads to my theory.
(I affirm what might be called the Gnostic lewxy Theory or the thesis that mathematics is the one body of knowledge which has
descended from the Gnosis into the Maya (or Sangsara) with no, or, at least, minimal corruption. "Thus it is the greatest, purity we know short of liberating Realization. It is thus the one tacet of Buddha (Enlightenment) which remains unveiled in the gangsara. It is therefore the yogic thread par excellence, and so: found it in 1936. Fere the thesis would be that authentic mathematics deals only with the infinite, veined or explicit, and never with special cases.)

Returning to the naan thread of our digcusaion, it will be desirable to show ane of the reason for the importance of a and pi. pi. was known by the aricients and played a part in the deeper phases of religious Initiation. Fanti gnythe aquitaine that the Great Pyrimla was built as a monument to pi; wherein it is revealed correct to five decimal places. The word "Elohim" when the numerical values of the Hebrew Letters 16 then is fund to be an anagram of pi. Elohim is equivalent to Kumara, Dhyan Cohan, Tathagata and, I believe, the Jupramental Being of Sri Aurobindo. These Being appear to stand on the border between the truly transcendent and the mundane. Here we get a hint as to the real meaning of the squaring of the archie, or rather the circularizing of the square. (In the lower sense the circle cannot be qquared 14 the are restriced to the use of "a straightedge and the mans compass, but can be done by other weans. pi is the key to this process) The circle represents the Transcendent the square the mundane. It bear very definitely on the Yogic proven... (In my Mandala the transcendent of the circle is in its tarn transcended by the equilateral hyperbola.) But pi. In relation to the circle is only part of itestgrifloance.

P1 Is also the value of eembun non-terninating genies, products and fractions, as follows:

$$
\begin{aligned}
& \frac{\pi}{2}=\frac{2}{1} \times \frac{1}{3} \times \frac{1}{3} \times \frac{4}{5} \times \frac{6}{5} \times \frac{6}{7} \times \frac{8}{7} \times \frac{1}{7} \times x+1 \\
& \frac{11}{4}-1-\frac{1}{3}+\frac{1}{b}-\frac{1}{4}+\frac{1}{7}+1+\frac{1}{15}+\frac{1}{4}+ \\
& \pi=\frac{4}{1+\frac{1}{2}} \\
& \frac{2+\frac{5}{2+72}}{2}-
\end{aligned}
$$

Finally pi has a place in the Theory of ProBability on a flat surfie of conveninet size draw a eeries of parallel lines at distance a from each other Provide yourself with needles of length 2. Throw these needles so that they land at random on the board. Recond in wo. columne the number that lie across the lines and the number. that lie In the spaces between the lines, Do this a lange number of times. The ratio will spproseh the vilue of $2 / \mathrm{pi}$. 3,408 tosses made in 1901 gave the iollowing value for pi, 1.e. 3.1415929. I find thia exceedingly sleniricant. It means that what we call random or chance is governed by law and, theretore, there is ho such tining as real randomness or chance. Thus randomess and chance are not tacta in nature but a mandrestacion of oux lgromance. Anplying this to the statiselcal thoory of physical law, whion 至einer has shown to be currant today, our laws ars not elving realitlee of dature; but are expresalone or the ligitations of our minowledee.
o or $\operatorname{m}_{n}\left(1+\frac{1}{4}\right)^{n}$ seems to be a munper belonging to the modern pertos (1.0 es since Des Cartes). Duler guggested e as the symbol for this number. Firet of all it is kighly inportint in the eigld of logerithms. It 1 c the ban of the watural cr fapler aystem, of logarithme and 10 by for the most inportant. (I can understand why you should be prefudleed, in favor of the Briegs.aystem.) But boyond thie, like pi, $1 t^{2} 18$ the value of different infiniteceries, nonterminating fractlons and produote. Sithl nore 1 nterosting is the fact that this number enters into all formulae related to living processes, such Es, plonts, antmals, hutans, corporatione, nations and all human institutions. Fou hnow ites Inportance in celculus and its unique property of being its own derivative. Thus d/ax ex equals e^{x}. One interpretation of this is thet rate of gronth is proportional to atate of growth.

If theae two Transcendentel humbers ares a important one 18 inclined to wonder about the non-Aenumerable inflinty of other Trenacencentals. The charecter of 311 these 10 more apt te be revealed in thelr nonterminating cormia forms than 1 n their decinal- forms. Fiowever you may like a loot ot pi snd e in the, coomigl form, thus
p1 equela 3.14159265366979323846-2-.......
(Ahanke earrioe thio to 707 deelnal places giving most of his life to the job, Э oque1s 2.7182816284590452353602874
(Inoldentlally, all rumbers canbe written in the non-terminating form, thus

1 equele . $999959999999999999599999999---40$ infintty.
Important for cantor'a proors.)

Now to your questions:

1. Vhore ato the term trancendental ortgninate nnd by whom?

Apparently it was Herrite, a French mathematician. Though the mathematical detinition is only technical, a number that canot be the root of an algebraic equation, yet I suspect an unconscious factor in the selection of the word. The tie-in with the Transfinite through Cantor, their non-denumeraive infinity, and the

1mportance of the two best known Transcendentals suggest this.
2. Are Transcendental numbers irrational numbers or are they excluded from that group?

I have seen them excluaed, but in general they are'in cluded. In the latter case they are to be distinguished from the ordinary. Irrationals that can be roots of algebraic equations, such as the nth root of a in all cases where this root is not exact.
3. If Transcendental Numbers are irrational numbers, then how can there be more Transcendental Numbers than rational numbers?

I suggest that you study Cantor's proofs.
4. What significance do Transcendental Numbers have if any?

I have already handed this in the case of p1 and e. Beyond this, they demonstrate the existence of a non-denumerable Infinite if Cantor's. proof is valid. And beyond this one stands in the presence of Mystery. (Kefer to the first paragraph of the High Indifference in "pathways" Where 1 refer to a higher Infinity transcending a lower Infinity. Figures provided by the conception of the Transfinite numbers enabled me to be articulate in writing on the figh Indifierence beyond what would have been otherwise possible.)
5. Is mathematics of today basically a rediscovery of past knowledge or is 1t a creation of expression by thepresent race?

There may be some rediscovery, particularly in the earlier work of the western Culture, but I think there is a good deal of pioneering. Senior was impressed and said He planned to take an incarnation to acquire this modern material: your use of the word "creation" bringe up a problem where there are philosophic differences. There are those who maintain that mathematics is only language and therefore invention. I hold the view that while mathematics of necessity has a language, and this no doubt is invented, more importantly it gives substantive Truth. The latter is discovered.

If you have trouble with thls you may get help on the mathenatics from Fir Hamilton, on the Philosophy from the head of the Philosophy Dept., and on the veiled Theosophical references from Erma.

I hope you do not ask about the Transfinite for that maght take a book, and 1 do not feel that energet $\frac{1}{c}$.

Good luck,

