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 Last Sunday, we covered a preliminary ground in which we became, 

presumptively, more familiar with the meaning of the word ‘finite’; and we perhaps all 

had some experience of an enlargement of our previously existing ideas as to how big 

finite can be. As a matter of fact we did not deal with any conceptions that were really 

difficult at all. The difficulty was in the domain of trying to expand the perceptual 

imagination to grasp notions which conceptually are rather simple. One lesson that 

should have come out of that experience is this: that the perceptual power is very 

definitely restricted. In what we shall do tonight, we will have to drop the perceptual 

power and operate with other cognitive powers. 

 Preliminary to what we shall say tonight, I shall outline three cognitive facets or 

powers: first of all perception, which we shall understand as the cognitive aspect of 

sensuous experience. The impressions we get from the world get organized more or less 

automatically into what we call percepts which are characterized by these qualities: that 

they are concrete and particular, but they are also definitely finite in their limitations. Last 

Sunday we sought to expand perceptual imagination so as to grasp something of the 

meaning of a googolplex, or that is 101 0 1 0 0
 —a pretty big number. 

 The second cognitive power we will call conception. It is a cognitive power that is 

non-sensuous in its purity; however much in common usage it may be more or less 

confusedly blended with perception, in its purity and in its most efficient operation, it 

achieves a high degree of freedom from the restrictions of the perceptual consciousness. 

It is characterized by generality, impersonality, and definitiveness. While these features 

are present in variable degrees as among different concepts, in their highest development 

we get an extreme generality, and an extreme definitiveness, and it’s on that level that 

mathematics exists. 

 The third form of cognition is one that is practically without recognition in the 

vast bulk of Western philosophy and psychology, but not totally without recognition. 

There are at least references among the German Idealists that point to it. By 

“introception,” I mean a cognitive power which transcends the subject-object 

relationship; but like perception, its content, if you may use that term, is concrete; but like 

unto conception, its content is completely universal, not particular. Its key word is ‘light’. 

You might call it cognition as pure light. In its purity it operates only in the domain of the 

infinite. It can be realized, and when realized in its purity, the sensuous or perceptual 

world drops away, vanishes, and, likewise, the conceptual world drops away and 

vanishes. 

 There are possibilities of an interblending between these three cognitive 

components. In our work last Sunday, we dealt with an interblending between perception 

and conception; in other words, a domain that’s familiar more or less to everyone. 
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Tonight, as far as may be, we will attempt to drop the perceptual component, since its too 

weak to journey on into the domains in which we propose to enter, and we’ll see if we 

cannot in some measure effect a fusion of the introceptual with the conceptual. I may say 

this about the vast majority of mathematicians, that they operate on the level of the 

conceptual, highly freed from the perceptual, but without the light of the introceptual. 

When you have the fusion of the introceptual and the conceptual, you have a different 

domain from that which is familiar to most mathematicians. You have spontaneous 

luminousness combined with the principle of organization. 

 Now, we have before us a far more difficult task than that of trying to 

comprehend the googolplex. Let us consider the totality of all natural numbers. Those 

consist of simply the positive integers, the 1, 2, 3, 4, and so on beyond all limits. One 

number and only one in that series is the googol, and another one is the googolplex. 

Consider this whole series as one entity. That means consider all possible integers 

whatsoever, and remember there is no such thing as a last integer. Embrace that totality 

as one entity. Now, you cannot embrace it in the sense of putting a circle around it. You 

could in principle put a circle around the googolplex. Your embracing has to be done in 

another way. Let us say we symbolize it by the arms held out this way with an open 

space, not making a closed circle. The arms defining a zone in one sense. The open space 

indicating a limitlessness. But the task brought to bear upon the conceptual imagination 

now is to grasp that totality as just one entity. 

 We’ll have to go further than that. We’re indebted to two German mathematicians 

of the last century for the definite defining and characterization of the infinite. These two 

are Dedekind and Georg Cantor. It is noteworthy in the work of Dedekind, in his essay on 

the nature and meaning of number, that you hardly ever see in that essay our ordinary 

numbers at all. It is an essay about sets and classes—about the primary ideas in the mind; 

and theorem after theorem developing with that simple material derives the most 

fundamental properties of number. Some of these we spoke of last Sunday—that number 

grows out of the establishing of a one-to-one correlation between two classes. We took it 

back to the stage of the infant and of the primitive. We saw how correlation probably first 

was made with the fingers of the hand and various objects, later with pebbles and various 

classes of objects like sheep, and so on. That was before notions of number as we have 

them were born. That’s fundamental counting. That is fundamental number. The basic 

notion upon which we build is that we can call two classes similar, or in ordinary 

language, equal when we can set up a one-to-one correlation between the two classes so 

that there are none left over in either class. Thus if there were five coins and five pebbles, 

we could set up, even if we didn’t know the word five or the number 5—that notion 

hadn’t been born—we could draw a line between a pebble and a coin, pebble and a coin, 

and exhaust the two classes at the same moment. When that happens we say they have 

the same cardinality—the cardinal number, which is the quantity number rather than the 

order number. Better get used to the word cardinality because we’re dealing with notions 

that are very fundamental. 

 And just as a interjection at this point: I may next Sunday, or sometime later, deal 

with some preliminary efforts along the line of what we might call a construction of an 

holistic mathematic, just some preliminary ideas, but to achieve any understanding of 

even the initial ideas, you have to grasp the conceptions with which we are dealing 
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tonight. The reasons for that will later appear. But now we’re going to note the property 

that’s peculiar of our class of numbers. 

 I’ll put down 1, 2, 3, 4, 5 . . . —a dotted line afterwards which means it goes on 

forever. And I’m going to put another line below which will be the doubling of each of 

the first numbers. Now, here’s a very important point: we can set up a one-to-one 

correlation between these to classes or sets—put this line here; that’s counting them. If 

there are just as many in the one set as there are in the other then they have the same 

cardinality. Now, isn’t it evident to you that no matter how far we go in the first set, 

we’ll always have a number corresponding to each number in that set in the second set? 

Corresponding to any number n over here, there’ll be a 2n here. There’ll always be a 2n 

corresponding to the n. Therefore there are just as many numbers, just as many 

elements, in the second set as there are in the first set. But another important fact, every 

element in the second set is to be found in the first set: 2 is found over here, 4 over 

here, 6 over in there, and so on. Yet there are elements in the first set that are not found 

in the second set; 1 is not found in the second, 3 is not, in fact every odd number is not 

found in it. There are just as many in one set as in the other. The totality of elements in 

the second set is the same as the totality of elements in the first set. They have the same 

cardinality. But the second set is a subset of this because all of it is found in that, but 

not all of that is found in this. 

 Now that quality, that property, is the definition of an infinite class. An infinite 

class is a class which has one or more parts, proper parts, which have the same 

cardinality, that’s the same number or totality, as the whole; a proper part which has the 

same cardinality as that of the whole. That is never true of any finite collection or a finite 

class. If you take a proper part of a googol, for instance, if you take 100, a subset of 100, 

out of that googol, the googol will be reduced by that one hundred. You can’t set up a 

one-to-one correlation. It does not have a proper part which has as many elements in it as 

the whole. Only infinite classes or sets have this property. 

 Now, there’s some very wonderful things you can do with our integers. Would 

you believe that you could count with the integers all the rational fractions? Just consider 

the rational fractions between 0 and 1. It’s obvious isn’t it, at once, that there’s an infinity 

of them in there: 
1
/1 0 1 0 1 0 0  would be one of the fractions in there, 

1
/2 , 

1
/3 , all the fractions 

with 1 in the numerator and any number in the denominator, and several with a larger 

number than 1 in the numerator, and that between 1 and 2 you find a similar infinity, and 

so on between every integer whatsoever out through the whole series. You would have an 

infinity of fractions between every one. Is that clear? Any one to whom it is not clear? 

 Now what we propose to do is to count the sum total of all fractions in the number 

system that goes out to infinity. What do we have to do to do that? We have to order them 

in a definitive way such that we’ll be sure of picking up every fraction whatsoever. Think 

about it. How would you go about that? How would you start out a system that would 

enable you to know certainly that in that system you had all of your numbers, rational 

numbers, fractions and integers, so ordered that you had them all. Now you couldn’t start 

out from zero and say you take the next fraction. It wouldn’t be 
1/2 ; it wouldn’t be 

1
/1 0 1 0  ; 

it wouldn’t be 
1
/10 1 0 1 0 0 . There’s an infinity of them between a googolplex and zero. Now, 

we don’t want the problem of trying to order them so that we can start counting. You 

can’t count until you can order. It so happens that this was worked out in a very clever 
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way and a rather simple way. Let us write all the numbers in this fashion. Now, let’s see 

we’ll, and just. We’ll write every number as a fraction. We’ll start in here with 
1
/1, the 

numerator will always be 1s on this line, but the denominator will correspond to the 

number there: 
1
/3, 

1
/4, on to infinity; and down here we’ll have 

1
/2, no wait a minute, no, 

no, 
2
/1 , 

2
/2 , 

2
/3 , 

2
/4 ; and we have 

3
/1 , 

3
/2 , 

3
/3 , 

3
/4 ; down here we have 

4
/1 , 

4
/2 , 

4
/3 , 

4
/4 , and 

so on. Now, if you follow that system out clear to infinity in every direction, you will get 

every fraction that there is in an orderly arrangement including every whole number, for 

the 
1
/1 reduces to a whole number, 

2
/2 reduces to the same one, 

3
/1 reduces to 3. You’ll 

have every integer, positive integer; you’ll have every fraction whatsoever somewhere in 

that system, and they’re nicely ordered. This will show right here. See these, all of these 

continue on to infinity—this way and that way. 

 Now, suppose we start and instead of writing it that way we write them (1,1) —

that stands for that fraction. It’s just a different way of writing it. Then from here we go 

over here; we write (1,2), and then we come down here on a diagonal—pick that up—we 

get (2,1), then we go back over here and we get (1,3), we get (2,2), and (3,1), and so on. 

Then we can set up our one-to-one correlation— 1, tied in here; this is the second one. 

This is the counting process now. This series—you can write this very simply now if 

you’ll notice certain rules. The sum of the two keeps ascending. There’ll be some with 

the same sum—that is, in here 1 + 2 = 3 and 2 + 1 = 3. You write them in the order that 

the ascending numerators. Hence you have perfect order then. This numerator is low; this 

numerator is larger. Then you take the ascending numerators here. The first number being 

the numerator in each case; the second number being the denominator of the fraction. 

Now, do you see that here you will actually pick up every rational fraction there is, that 

you’ve given to it a definite order, and that now you can count it? And no matter how far 

you go out here you’ll always have a whole number, an integer, that will correspond to 

your rational fraction. Hence, there are enough integers to count not only all the integers, 

but all the integers and all of the rational fractions in addition. 

 This is the mathematics of the infinite now, not the mathematics of finite 

quantities. It’s a different dimension of mental process, but it just so happens that this 

correlates and gives a rational pattern to many reports from mystical experience. 

Experiences that appear to the ordinary consciousness as quite irrational when they’re 

formulated, when you use this kind of logic they fall into a comprehensible and rational 

form. That’s where the importance of this comes in. In fact you don’t have to say 

thinking has to stop when you get over into at least some dimensions of the transcendent. 

We’re dealing with an instrument that enables us to carry a kind of thinking over. That’s 

where the importance of following this kind of reasoning comes in. 

 Now, what we’re using here in our one-to-one correlation is precisely what 

primitive man did when he counted with his fingers. And if you are justified in saying 

that if you get a correspondence with these five fingers among certain objects, if you’re 

justified in saying that they have the same cardinality, using the same process, exactly the 

same process, just as rigidly, we can say of this series here that it has the same cardinality 

as that. The series or collection consisting of all whole numbers plus rational fractions 

can be counted by all of the whole numbers. You’ve got to forget all the rules held in 

your ordinary grammar school arithmetic. This is another domain. 
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 Now, this infinite, an infinite like this that can be counted is called a denumerable 

infinite. The idea is that if you could count for infinite time you could count them all. 

Later we will have to consider the infinites that cannot be counted. Now we have another 

thing. This is a simple one. This is not severe yet. The next one we won’t attempt. I’ll just 

point out the fact that a further proof was made that not only the whole of rational 

numbers but the whole of algebraic numbers can be counted. Algebraic numbers include 

all rational numbers plus a large number of irrationals like the , and imaginaries like 

the , or complex numbers like a + b. They are numbers, the technical definition of 

which you probably wouldn’t understand and wouldn’t be expected to understand, but 

they are the numbers that can be the solution of algebraic equations of any degree having 

integral coefficients. The class of numbers is so large that we ordinarily represent them 

by a two dimensional plane. We put our ordinary numbers which we call commonly the 

real numbers—just a name—and so on; now we have the minus numbers in the opposite 

direction; and we have on this vertical line the imaginary numbers—and we have – , –2 

x  , –3 x  , so on indefinitely in each case. And out here we would have points in 

space; this number would consist of 3—this one underneath, like that— +2 into  ; 

that’s called a complex number. And this space would be filled all full of every possible 

number with every possible fraction whatsoever. We take that up as a convenient way of 

representing them. Further proof was made by Cantor that the sum total of all of these 

numbers that can be solutions of algebraic equations can be counted by the rational 

integers. We won’t try to do anything more than just state that fact. 

 But we come now to the next step—a proof, although there’s at this point some 

differences of opinion, that you cannot count the total of all real numbers. Real numbers 

consist of those that are not imaginary—like our integers, like our fractions, 
a
/b , all of 

these simple irrationals, cube root of 7, and so on. All of these that I put on the board here 

can be solutions of algebraic equations with integral coefficients, but the real numbers 

include numbers like , the ratio of the diameter to the circumference of a circle, and e—

the number is written this way—one of the simple ways of—the limit when n equals 

infinity of (1 + 
1
/n)

n
 —two numbers of enormous importance:  you can appreciate; e, 

the base of our natural system of logarithms, but more important than that in one respect, 

it is found that wherever you study the phenomena of life, get the statistical data 

connected with anything that is living, draw your curves that correspond to your 

statistical data giving your life cycle, the curve when reduced to a formula or to an 

expression always involves the number e. There’s some mystery in this, but e is the 

number of life. Now, e and   are transcendental numbers. That means technically that 

they cannot be a solution of algebraic equations having integral coefficients. At the time 

of Cantor, these were the only transcendentals definitely known. They’re an awfully hard 

number to find, but his proof was that they are so much more numerous that when added 

to the other numbers they cannot be counted. 

 Now, here’s a little bit of proof that begins to take you into the domain of higher 

mathematics—the reasoning that’s sometimes used in higher mathematics. Facing the 

problem of ordering all the real numbers—that doesn’t mean merely the rational 

numbers, integers and fractions, which it was easy to order; but now you’re going to try 

to order all the real numbers. That means you’d have to get in every irrational and every 

transcendental there would be. It’s an impossible order; there’s no way of doing it, at 
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least that a human mind can envisage. Now, Cantor suspected that the number of real 

numbers was so great that you could not count them even with an infinity of integers. 

 Now let us consider the region from 0 to 1. If we could prove that you could not 

count all of the real numbers between 0 and 1, then obviously you couldn’t count all of 

the real numbers from 0 to infinity. So all we have to consider if we’re going to prove 

they can’t be counted is the region from 0 to 1. Let us take every fraction—these would 

all be fractions—write them as nonterminating decimals. Thus, for instance, some are 

naturally nonterminating, most of them would be, and if you had a .4, which is complete; 

in the nonterminating form you write it this way: 3.399…, and your nines go on to 

infinity, and when you get to infinity this number is just as big as the .4. So you can write 

everyone of those terminating decimals or fractions in a nonterminating form. Now we’re 

going to write all of the numbers between 0 and 1 in a nonterminating form. See if you 

can follow this. Yet we can’t find an order, so we assume that an order exists. We’ll write 

our first number, and let us use letters to represent the digits in our fractions. We have a1 

a2 a3, and so on to infinity. Now our next one, we’re just saying arbitrarily that an ordered 

way has been found; maybe only that God himself could find that order, but we just say it 

exists—that it exists somehow and we let these letters stand for it. This is where the 

reasoning gets subtle. Go on, we have c1 b1 b2 no, c1 and c2 , so on; that would be. Now 

this goes on down here to infinity too—infinity in both directions. Now, assuming that 

we’ve been able to order them and count them we examine it to see if there’s any 

difficulty, and at once a difficulty arises because we can find that there’s an infinity of 

numbers no matter how we arrange this that will not be included. For instance, consider 

the numbers that you get by taking that diagonal down. Write another number where you 

change this digit in the series, and change that digit, change that digit, and so on clear 

through; you’ll clearly have a number that will be different at least in one place from any 

number that you may have in this series. Can you see that? That means, then, that you 

have not got all of the numbers in. As a matter of fact, since you could do that on any of 

these diagonals there would be an infinity of numbers that you could not have included 

no matter how far or completely you wrote this out. In other words, our assumption that 

you could count them, order them and count them was proven false. The other conclusion 

is that they are nondenumerable; that they are so numerous that the infinity of digits that 

could count all our fractions, all our algebraic numbers, and could count all of those 

numbers though you multiplied them by infinity—still could count them—could not 

count the sum total of all real numbers. 

 Now here is where the logic gets subtle. The principle that’s employed is this: 

first we say that the totality of all real numbers is countable or it is not countable. If you 

find that when you assume that it is countable you run into a contradiction, then the 

conclusion must be that it’s non-countable. That’s the dichotomy. The question of 

whether this reasoning is sound or not depends upon whether the dichotomy is valid. 

Now it is, for instance, if you where to say that an equation is either reducible or not 

reducible, you would have two classes. It belongs one way or the other. Does that hold? 

Is there some middle ground which belongs to the zone of that which is “not reducible” 

and “not not reducible”? Some criticism of the reasoning here has been brought from that 

angle. But if we accept the soundness of the reductio ad absurdum, then it follows that 

the sum total of all real numbers is more than a denumerable infinite. 
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 Now here’s the interesting fact. At Cantor’s time two transfinite numbers were 

known. Since then several classes of an infinite number of transfinite numbers have been 

discovered. They are immeasurably, infinitely more numerous than all the other numbers 

put together, and yet they are hard to discover and only two of them are well-known to 

everybody, namely  and e. Let us suppose we took all other numbers than these 

transcendentals—all the algebraic numbers, integers, rational fractions, and the ordinary 

irrationals, and the imaginaries, and complex numbers—and we placed them out in space 

as I showed before. We’d find this true: that between any two of those numbers that 

would correspond to specific points, like the points I have listed here which we’ll say are 

a + b and c + d. Between any two points you can always find another number. You 

can always find another number. Do you see that from that statement it follows that you 

can always find an infinity of other numbers? Now here’s a check of your logical sense. 

If between a and b, or 1 and 2, I can find another number, if it always is true that between 

any two numbers I can find another number, then it must follow that between those two 

numbers I can find an infinity of other numbers—of course quite obviously. Between 

your a and your b another number, we’ll call that c, but our rule would say that 

somewheres between c and b we’d find another number, and so on ad infinitum. 

 There’s another feature of mathematical thinking that’s very fundamental. It’s 

part of the step from “any-ness” to “every-ness.” If you can say something about any 

member of a class, or set, or group, or collection, by “any” we mean one picked at 

random, whatever we can say of any, we can say of every. See, we’re picking out any on 

the basis of its general property, not about particularities that may attach to special 

entities. 

 Now it would seem, would it not, to you that after we got down all of the 

algebraic numbers, all of these numbers we’ve been talking about except transcendentals, 

that that plane would be pretty solidly filled. wouldn’t it? Remembering that you can 

always get an infinity of numbers between any two points; yet as a matter of fact, that 

would be like a sky with the numbers corresponding to points like stars with vast black, 

blank spaces in between. Your plane is not tightly filled. Remember, your points have no 

area at all. They’re absolutely sharp—arealess. They haven’t packed that plane; but 

actually that plane has infinitely greater spaces in it than the space that would correspond 

to the numbers. In other words, without the transcendentals you don’t have a true 

continuum. The only way you can fill that space is by bringing all of the transcendentals 

in. And I think you can begin to see the enormous vastness that belongs to the 

transcendental numbers as compared to all of the other numbers. 

 So, one simple notion of infinity is not enough to take care of our total problem of 

determining the cardinality of all possible classes. This leads us to what you might call a 

hierarchy of infinities. The first infinity that corresponds to the total of all integers, which 

was sufficient to count integers and fractions, and in addition sufficient to count all 

algebraic numbers, has been written variously as Aleph-Null, or 0, it sometimes has 

been written Ω 0 , one is the first letter of the Hebrew alphabet and the other is about the 

last letter of the Greek. And this is known as the denumerable infinite corresponding to 

the cardinality of all integers. The cardinality of all real numbers is more than infinitely 

greater than that. And we have a very interesting multiplication table. There are certain 

laws that attach to these numbers. And we take 0 add 1 to it and the answer is just 0; 
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add a googolplex to it and it swallows it just as easily. The answer is 0. Just swallows it 

as easily as it does the 1. Or, again, if we subtracted a googolplex from it, have 0 minus 

a googolplex, which is 101 0 1 0 0
, and that just equals 0. You can’t disturb its calm in that 

way. You see a whole universe like this could drop out and it would just go on just as 

placidly as you please, nothing happens. Or, now, let us try something else, see what 

multiplying would do. If you multiply it by a googolplex, that is 101 0 1 0 0
 times—I can’t 

justify these statements; you just have to take them; I think that’s enough anyhow—

what’ll happen? It swallows it up just as easily. It hasn’t changed it at all. The 

multiplication table is very easy to learn when it’s like that. Another thing, you take and 

multiply it by itself, that’s equal to (0)
2
, it just keeps 0. You haven’t disturbed it yet. It 

takes something more powerful to disturb it than that. That means none of these 

processes have taken us out of the domain of the denumerable infinite. This is what you 

have to do to have any affect on that number. You take (0)
0 and that’ll give you—at 

last it does something—you get 1; the second transfinite number. 

 Now you say do these have any correspondence? Does this number correspond to 

anything? It corresponds to the cardinality of the totality of all real numbers including the 

transcendentals and the cardinality of the continuum. That is the mass of numbers it 

would take to make all of this space solid. And the same effect of multiplication and 

addition applies to 1. As a matter of fact (1)
0 just swallows that up and it remains 1. 

It’s unaffected by it. The only thing that affects it is raising it to the 1 power, in which 

case it achieves a higher cardinality and becomes 2. Now, there’s some evidence that 

this corresponds to a class of entities with which we actually deal. The statement is that it 

corresponds to the number of single valued functions, but you won’t understand that, and 

those, so far as I know, are the only ones that have usage. 

 Now let us assume the process carried to the limit and we get this:  —the 

symbol of the whole, the Holistic, the most comprehensive conception. It evolved in the 

mind of man, and since the mind of man is a part of the whole, it could not evolve 

something greater than the whole; hence, as the most adequate symbol of the vastitude of 

the whole: . Your googolplex by now is a microscopic pellet. In the sea of the 

illimitable, the whole galactic universe, nay a denumerable infinity of galactic universes 

of the same size would dissolve into a submicroscopic insignificance. 

 It really makes no difference whether you call the universe an illusion, as Shankara 

and as the Buddhists do, or whether you call it real, as Sri Aurobindo does; in any case, in 

the presence of the multiple infinitude of the whole, they are absorbed as insignificant 

irrelevancies. Hence, whether real or illusion is not a point of vital importance. 

 When a mathematician speaks of the infinite, he does not mean merely a big 

number. He means things like this series of which we have spoken. But he means in 

differentiating between infinities of different orders, that they still have a character; that 

it is not a blank of largeness in which there is no element of determinateness at all, but 

rather that they have a character so that there is something distinguishable—a hierarchy 

of infinities. 

 Now the question would arise: how could a finite creature ever know, ever 

realize the infinite. The answer is a finite creature never could, for the finite creature 

would be limited to a progression of finite steps, and in a finite time could never realize 
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the infinite. But if the reality of man, nay the reality of all creatures, of all entities, is 

that they are part and parcel of the infinite, not merely cutoff apparent finite fractions, 

but coextensive with the infinite, then the infinite is knowable in the sense of 

Realization by the simple removal of an obscuration; the seeming of finitude being 

placed by some instrument of obscuration. 

I considered it very significant when Dedekind gave his existence theorem 

concerning the reality or existence of infinite manifolds: he said take the ideas in the 

human mind; you can have an idea, which we’ll call a1 , and then you can have an idea of 

that idea, which we’ll call a', and then the a' can be put in the first series as an object of 

thought, and your a2 would be the idea of this idea, and that can be placed up there, and 

the process continues indefinitely. Every idea in the second series would be in the first, 

but there’d be one idea in the first series that was not in the second. Particularly, he gives 

the idea of our own ego as one that’s not included in the second. You have a 

cardinality—equal cardinality, the same cardinality because of the one-to-one 

relationship. Therefore, the ideas in the human mind are infinite. Now, that doesn’t mean 

that they’re infinite in the sense of actual concrete thinking of an infinity of ideas, you 

might say infinite by this power of a generating progression; that the very power to 

generate the progression and to see it points to its infinitude. 

 I know these ideas have some subtleties in them. They’re too easily grasped. I’m 

quite sure that the lecture of last Sunday probably seems rather simple now and that the 

googolplex is something you may take in your stride relative to this. I’ve been thinking 

during the last few days of a possibility of formulating the first principle for what we 

might call a holistic mathematics; and I might by next Sunday be prepared to give a first 

talk on this, but I’ll have to assume that you’re familiar with the kind of thinking we’ve 

been doing tonight. It’ll prove necessary if we are going to use the basic holistic 

conceptions and use the mathematics of the transfinite. So this is preparatory, in one 

sense, to that as the other part of its meaning was to give some more adequate 

understanding of what is meant when we speak of the whole. No simple denumerable 

infinite, but a vast nondenumerable infinity compounded an infinity of times. Naturally, 

we sink as relative beings into a less than microscopic significance compared to that, but 

he who knows that this vast, this which is none other than Parabrahm, is that with which 

in truth I am identical, need not identify himself with an insignificant finite appearance, 

but may know, as Shankara said, that he is not only a part of Parabrahm, but that he’s 

identical with the whole of Parabrahm. Now let us add to that Sri Aurobindo’s insistence 

upon the persistence of individuality. By the use of the conceptions we employed tonight, 

it is quite readily possible to reconcile those two statements of identity with the whole of 

Parabrahm, the whole of the holistic, and yet infinite variety of individuality. 

 That, I think, is enough for tonight. 


